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Direct numerical simulations (DNS) and optimal control theory are used in a predic-
tive control setting to determine controls that effectively reduce the turbulent kinetic
energy and drag of a turbulent flow in a plane channel at Reτ = 100 and Reτ = 180.
Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the
control. The algorithm used for the control optimization is based solely on the control
objective and the nonlinear partial differential equation governing the flow, with no
ad hoc assumptions other than the finite prediction horizon, T , over which the control
is optimized.

Flow relaminarization, accompanied by a drag reduction of over 50%, is obtained
in some of the control cases with the predictive control approach in direct numerical
simulations of subcritical turbulent channel flows. Such performance far exceeds what
has been obtained to date in similar flows (using this type of actuation) via adap-
tive strategies such as neural networks, intuition-based strategies such as opposition
control, and the so-called ‘suboptimal’ strategies, which involve optimizations over a
vanishingly small prediction horizon T+ → 0. To achieve flow relaminarization in the
predictive control approach, it is shown that it is necessary to optimize the controls
over a sufficiently long prediction horizon T+ & 25. Implications of this result are
discussed.

The predictive control algorithm requires full flow field information and is compu-
tationally expensive, involving iterative direct numerical simulations. It is, therefore,
impossible to implement this algorithm directly in a practical setting. However, these
calculations allow us to quantify the best possible system performance given a certain
class of flow actuation and to qualify how optimized controls correlate with the
near-wall coherent structures believed to dominate the process of turbulence pro-
duction in wall-bounded flows. Further, various approaches have been proposed to
distil practical feedback schemes from the predictive control approach without the
suboptimal approximation, which is shown in the present work to restrict severely
the effectiveness of the resulting control algorithm. The present work thus represents
a further step towards the determination of optimally effective yet implementable
control strategies for the mitigation or enhancement of the consequential effects of
turbulence.
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1. Background

The recent development of the technology necessary to produce micro-scale me-
chanical devices, commonly referred to as micro-electro-mechanical systems (MEMS),
has prompted researchers to investigate the possibility of using micro-scale actuation
for the control of unstable flow phenomena in order to achieve macro-scale effects.
Such leveraging of control effort is possible in chaotic systems (such as turbulence)
due to the extreme sensitivity of such systems to small levels of control forcing. Of
primary interest in such problems, of course, is the determination of when and where
control should be applied to maximize the desired effect.

The original vision for the emergence of MEMS was given by Richard Feynman
(1959), in his classic lecture at the American Physical Society entitled ‘There’s Plenty
of Room at the Bottom’, in which Feynman foresaw many of the techniques and
challenges encountered by the MEMS community today. Building on the technology
developed for the fabrication of silicon chips, there has been a flurry of activity in
MEMS for the last decade. For reviews of recent developments of MEMS technology
which relate to micro-scale measurement and control in fluid mechanics, the reader
is referred to Ho & Tai (1996, 1998), McMichael (1996), Gad el Hak (1996), and
Moin & Bewley (1994). In these reviews, the reader will find a variety of sensors and
actuators currently under development which are suitable for application in feedback
control of turbulence. The primary questions in MEMS development today are how
to design such devices to be durable in hostile environments and how to produce such
devices at high yield and low cost.

Suffice it to say here that, in the near future, it might be possible to use MEMS
technology to measure small-scale turbulent fluctuations of a flow and, subsequently,
to apply coordinated small-scale forcing to the flow in order to achieve a desired
large-scale effect. Examples of problems of particular interest include reducing drag,
reducing heat transfer, delaying transition, delaying separation, increasing mixing,
and reducing levels of wall-pressure fluctuations and/or radiated sound. For each of
these problems, important questions arise:

1. How much do practical engineering designs stand to benefit if durable MEMS
sensors and actuators can indeed be built in large arrays?

2. How and where should the control be applied?
3. Is feedback necessary? If so, what attainable flow field measurements provide the

most useful information? What feedback algorithms are most effective? Specifically,
(i) Are simple output feedback rules sufficient, or is low-order state estimation
required?
(ii) Is linear feedback effective for the control and estimation problems, or is a
gain scheduling approach and/or some form of nonlinear feedback preferable?

Answers to most of these questions are not yet known. The present work implements a
sensitivity analysis of the Navier–Stokes equation through the definition of an adjoint
field. From this type of analysis, answers to some of these questions may begin to
be sought. As discussed in Bewley (2001) and Bewley et al. (2000), the approach
used in the present paper may be extended readily to a variety of problems in fluid
mechanics, including the optimization of open-loop time-periodic forcing profiles for
turbulent jets and the forecasting of chaotic fluid systems based on limited noisy
flowfield measurements. Thus, the approach being developed is of interest even if vast
arrays of durable MEMS devices are never realized for commercial use.

We now summarize a few of the recent approaches used to determine implementable
feedback control algorithms for turbulent flows, categorizing these approaches to
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the feedback control problem by examining their mathematical dependence on the
equation governing the system. This brief survey of this active field of research puts
the present approach in context with a sampling of the other techniques currently
under investigation. For a more thorough discussion along this line, see Moin &
Bewley (1994).

1.1. Adaptive networks

The first class of schemes which may be proposed to achieve small-scale flow control
actually makes no explicit reference to the dynamics known to take place in the flow
or the Navier–Stokes equation which governs these dynamics. Instead, a ‘reasonable’
network is fashioned which takes as input those measurable flow quantities assumed
to be most relevant to the control problem and produces as output the requisite
control velocity. The coefficients of this network are then ‘trained’ by applying the
control network to the flow and gradually adjusting the coefficients in a heuristic
manner based on the resulting evolution of the flow. (Note that there are many
different approaches to adaptive control. Hertz, Krogh & Palmer 1991 and Ioannou
& Sun 1996 discuss several possible techniques.) The main advantage of the adaptive
approach is that the feedback coefficients can adjust to compensate for changing
characteristics of the system being controlled, such as modification of the mean flow
speed and direction, the sensitivity of the sensors, and the responsiveness of the
actuators.

As an example of one adaptive approach, an adaptive inverse technique has been
applied by Lee et al. (1997) to a turbulent channel flow at Reτ = 100, providing
approximately 20% drag reduction. This approach first develops an approximate
‘inverse model’ between measurable flow quantities (as input) and the control forcing
(as output) with an adaptive technique. This is done by forcing the system with
small, ‘sufficiently rich’ control signals which ‘push’ the system in a variety of different
directions while monitoring the responses of the measurements. From these data, a
network is constructed which attempts to reproduce (model) the control used based on
the measurements taken. (In an inherently nonlinear system such as turbulence, this is
a challenging proposition, as any simple linear expression of this relationship would
probably be highly non-stationary as the arrangement of the coherent structures near
the wall evolves in time.) Each iteration of the adaptation for this inverse model
consists of three steps: (1) computing the error of the model output with respect
to the desired model output (the actual control forcing used), (2) determining the
influence of the various weights in the model on this error, then (3) updating all
the weights in the model a small amount in a manner that reduces the error. When
applied to the nonlinear adaptive networks commonly used for this purpose, known
as ‘neural networks’, this is referred to as ‘back-propagation’ of the error. Once (if) the
approximate inverse model between the flow measurements and the control converges
for the open-loop system, the inverse model is used to determine a control which will
drive the flow measurements towards some desired state. This control is then applied
to the flow, and the inverse model is further trained to adapt it to the (now modified)
characteristics of the closed-loop system. In the case of Lee et al. (1997), the desired
state was chosen to be a state with reduced fluctuations of the spanwise wall shear.
Several other strategies may be considered and lead to schemes of varying degrees of
effectiveness.

1.2. Schemes based on understanding of dominant physics

In situations in which the dominant physics is well understood, judgment can guide
an engineer to design effective control schemes. Success is limited, however, by the
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engineer’s understanding of the physical processes involved; in the case of turbulence,
our understanding is still limited despite several decades of intense research.

As an example, an opposition strategy was used by Choi, Moin & Kim (1994) to
reduce the drag in a turbulent channel flow at Reτ = 100 by mitigating the effect of
the near-wall vortices. By opposing near-wall vertical motions of the fluid with an
equal and opposite control velocity at the wall, the motion of high-momentum fluid
towards the wall by the sweep events is abated, and the drag may be reduced by up
to 25%.

In follow-on computations and flow visualizations by Hammond, Bewley & Moin
(1998) at Reτ = 180, it was shown why this opposition strategy is effective only when
the distance y between the detection plane and the wall is sufficiently small (y+ = 15
works best). When the detection plane is too far from the wall, high-speed fluid may
be drawn in on a skewed path from a sweep event into the near-wall region and
down towards the wall beneath a nearby ejection event, where the opposition scheme
applies suction. For y+ > 15, this mechanism of instability of the closed-loop system
is possible, and the turbulence levels and mean drag of the flow are significantly
increased. For y+ . 15, the detection plane is too close to the wall for this mechanism
of instability to be effective (as viscosity limits the cross-flow convection possible
immediately adjacent to the wall), and the turbulence levels and mean drag are
reduced.

Another promising intuition-based concept was proposed by Koumoutsakos (1997),
in which the turbulence control problem is considered in terms of the minimization of
the so-called ‘vorticity flux’ (i.e. the wall-normal component of the vorticity gradient
tensor) at the wall. The control algorithms considered in this framework may be
constrained at the outset to depend on wall information only. The simulations
of Koumoutsakos (1999) of a turbulent channel flow at Reτ = 180 indicate the
formation of sustained spanwise-coherent fluid ‘rollers’ near the wall with wall-normal
blowing/suction via a control strategy targeting reduced gradients of vorticity near the
wall. Drag reductions of 40% are reported. A related strategy has been proposed by
Keefe (1997) in which the wall-normal gradients of wall-normal vorticity are reduced
via the selective actuation of an array of small rotatable disks flush-mounted on the
surface rather than a distribution of blowing/suction. Such a configuration might
be more straightforward to implement in hardware than blowing/suction. Related
channel-flow simulations, in which body forcing confined to the x+

2 < 6 region was
used instead of boundary forcing, have resulted in drag reductions of up to 35%
(Keefe 1995).

1.3. Extrapolation of linear control theory

The application of linear control theory to the linearized Navier–Stokes equation in
a channel is straightforward: see, e.g. Joshi, Speyer & Kim (1997) for the application
of classical control theory and Bewley & Liu (1998) for the application of modern
control theory. There are a few critical issues concerning the development of practically
implementable algorithms which are still being addressed, but these do not appear to
be insurmountable.

One of the most important such issues is that the weights in the linear feedback
controller must have compact support in physical space (even if it is designed in
Fourier space) in order for the controller to be implementable (Bamieh 1997). It
is important to note that many linear controllers designed in Fourier space do
not satisfy this property. In flows which are not spatially periodic (as is the case
with all real channel flows), an incorrect assumption of spatial periodicity in the
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application of a non-compact controller would result in a Gibbs phenomenon which
would probably render the controller ineffective even if all other assumptions in the
controller design were met in the experiment. On the other hand, a physical-space
controller with compact spatial support is not affected by Gibbs phenomenon and
therefore generalizes to a variety of periodic and non-periodic flows with similar
near-wall dynamics.

Another important issue yet to be completely resolved is the most appropriate
method for linear model reduction. Cortelezzi et al. (1999) addresses this topic and
obtains a linear model reduction by truncating those linear eigenmodes with low
observability or controllability from a model of a two-dimensional unsteady channel
flow. (Surprisingly, Cortelezzi et al. 1999 reports a drag reduction to 50% below the
laminar level by application of a zero-net-mass-flux linear controller.) In the highly
non-orthogonal (i.e. nearly defective) systems often encountered in three-dimensional
flows, model reduction schemes that take into account the transfer function of interest,
such as the p, q Markov covariance equivalent realization (Villemagne & Skelton 1988)
or optimal Hankel norm approximation (Zhou, Doyle & Glover 1996), are well suited,
and should be studied in future work.

Even with such questions remaining open, researchers are beginning to consider
the extrapolation of the linear control feedback determined by linear control theory
directly to the fully nonlinear problem of a turbulent flow. The first reason to try
such an approach is simply because we can: due to the ease of determining and
implementing linear control feedback, we should attempt to exploit everything we can
from our ability to compute linear controls.

There is at least some justification in the fluids literature for such an approach.
Though the significance of this result has been debated, Farrell & Ioannou (1993) have
clearly shown that the linearized Navier–Stokes equation in a plane channel flow, when
excited with the appropriate stochastic forcing, exhibits behaviour which is reminiscent
of the streamwise vortices and streamwise streaks characteristic of turbulent flows,
though perhaps at a length scale which must be tuned by observation of the full
nonlinear system. Whatever information the linearized equation actually contains
about the real mechanisms for formation of streamwise vortices and streamwise
streaks, the linear controllers should be able to exploit.

There is also some justification in the mathematical literature for such an approach.
Interestingly, Barbu & Sritharan (1998) proved mathematically that solutions of the
linear robust control problem for Navier–Stokes systems, such as those determined
by Bewley & Liu (1998) for small perturbations to a laminar channel flow, are γ-
suboptimal for the full (nonlinear) Navier–Stokes equation for finite (albeit sufficiently
small) flow perturbations. However, important possible pitfalls of applying linear
control feedback to stabilize large flow perturbations, such as those on a chaotic
attractor (where the effects of the nonlinear terms are essential for describing the
system behaviour), are illustrated for a simple model problem by Bewley (1999). It
is shown in this reference that such an approach can lead to closed-loop systems
which can either converge to the wrong state or even blow up unless the appropriate
nonlinear switches are introduced.

1.4. A need for reduced-order nonlinear models

When considering the control of the multi-scale phenomenon of turbulence, it is clear
that an accurate reduced-order nonlinear model (as an alternative to direct numerical
simulation) would simplify the control problem greatly. At the very least, an efficient
reduced-order representation of the near-wall turbulent state is probably necessary
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if we are ever to attempt to implement an estimator-based control algorithm, as
discussed in § 2.4, even if the dynamics of such a reduced-order model does not
follow closely the dynamics of the full Navier–Stokes system without substantial
measurement feedback. Such reduced-order models for turbulent flows have been
sought for years, though the suitability of current approaches for providing such
models for a controlled turbulent flow (for which the dynamics is substantially altered
from that of the uncontrolled turbulent flow) is still an open question.

In the framework of a reduced-order model, the movement of the near-wall longi-
tudinal vortices when observed in a cross-flow plane is interpreted as the orbiting of
a low-dimensional state. The complete passage of a coherent structure through the
cross-flow plane of interest leads to a rapid jump in this state to a different state, rep-
resenting a modified distribution of near-wall longitudinal vortices. Such a rapid jump
between critical points (sometimes referred to in the fluids literature as a so-called
‘turbulent burst’), followed by a quiescent period in which the flow pattern remains
largely unchanged, is referred to in the dynamical systems literature as a heteroclinic
cycle. With a good reduced-order model, one might hope to characterize the quiescent
period, as the longitudinal legs of the near-wall coherent structures convect through
a given cross-flow plane. However, it is much more difficult for a model to capture
the phase during which the end of a coherent structure passes through the cross-flow
plane of interest and a new distribution of longitudinal vortices emerges. To decrease
the frequency with which a reduced-order model must adjust to a new arrangement
of near-wall longitudinal vortices, it is useful to utilize such models in a reference
frame which convects at the average speed of the coherent structures.

The techniques of dynamical systems theory have encountered some success in
analysing and interpreting turbulence dynamics (Aubry et al. 1988; Holmes, Lumley
& Berkooz 1996). Due to their large range of spatial and temporal scales, however,
turbulent flows are known to have relatively high dimensions in this framework even
at fairly low Reynolds numbers, which makes analysis of these systems extremely
difficult (Keefe, Moin & Kim 1992).

An example of one approach for determining reduced-order models is the ongoing
work of anatomizing the coherent structures of wall-bounded turbulence using the
proper orthogonal decomposition (POD) (Berkooz, Holmes & Lumley 1993). This
decomposition provides a (numerically determined) set of modes which is particularly
efficient in representing second-order turbulence statistics near a wall, at least when
no control is applied to the flow. However, the equation expressing the evolution
of and interaction between these modes is quite complex. The best way to extract
POD modes for a controlled turbulent flow remains to be determined. Some sort
of iterative technique, in which the control algorithm and the POD modes are
sought simultaneously, might be required in order to extract a set of modes which
efficiently captures the energetic structures actually present in the controlled flow. As
the controlled flow is not statistically stationary, one might ultimately need a sequence
of different POD models/control algorithms to completely relaminarize an initially
turbulent flow, with the controller scheduling required based on an (evolving) bulk
flow statistic such as total drag or turbulent kinetic energy.

As a preliminary example of control using such a reduced-order model, Coller,
Holmes & Lumley (1994a, b) considers the control of a simple model problem (devel-
oped by Aubry et al. 1988) governed by a two-component equation with dynamics
similar to that of a POD model of near-wall longitudinal vortices. This model equa-
tion is subjected to random excitation to account (albeit, roughly) for unmodelled
system dynamics and disturbances. A strategy is developed and demonstrated which
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delays heteroclinic transitions in this simple model as long as possible by sensing
when the state is near an unstable fixed point and maintaining it there with feedback
control for as long as possible. Once the state diverges from this fixed point, pre-
sumably due to the significant unmodelled dynamics of the flow (e.g. the passage of
the head of a coherent structure), control is turned off until the state approaches the
neighbourhood of another unstable fixed point. Such a ‘chaos control’ strategy is akin
to that proposed by Ott, Grebogi & Yorke (1990) and implemented in a turbulent
channel flow setting by Keefe (1993). Preliminary work on the application of this
type of strategy to low Reynolds number turbulent flows is reviewed by Lumley &
Blossey (1998). To date, approximately 20% drag reduction has been obtained with
this approach in turbulent flows.

1.5. A need for model-based control strategies

The complex, multi-scale nature of turbulent flows has largely thwarted efforts to sub-
due turbulence with feedback based on either adaptive ‘black boxes’ or on physically
based notions and has frustrated efforts to develop reduced-order models from which
effective controls may be determined. We are thus driven to derive turbulence control
algorithms directly from the equation known to govern the problem at hand. The rest
of this paper describes and demonstrates one approach to determining such control
strategies via optimal control theory and iterative direct numerical simulations.

2. Optimal and robust control in the predictive control framework
2.1. The seminal idea and an analogy to the game of chess

The general idea of the receding-horizon predictive control setting (as formulated in
continuous time) is shown in figure 1. To put this approach into a more intuitive
context, and to appreciate better the importance of the (somewhat mathematical)
gradient-based optimization approach to the present problem, it is useful at the
outset to compare and contrast the present approach to massively parallel brute-
force algorithms recently developed to play the game of chess. The parallels and the
shortcomings of this analogy highlight well the problem at hand.

The goal when playing chess is to capture the other player’s king through an
alternating series of discrete moves with the opponent: at any particular turn, a
player has to select one move out of at most thirty or so legal alternatives. Upon
first inspection, this task seems quite simple compared to the problem of control of
three-dimensional turbulence. Even once the problem is discretized in space and time,
the turbulence control problem is generally a much higher-dimensional optimization
problem, involving the coordination of a large array of actuators, where the effects of
all control actions are intricately coupled via a high-dimensional, nonlinear, chaotic
state governed by the Navier–Stokes equation.

To accomplish its optimization, a computer program designed to play the compar-
atively ‘simple’ game of chess, such as Deep Blue (Newborn 1997), must, in the worst
case, plan ahead by iteratively examining a tree of possible evolutions of the game
several moves into the future (Atkinson 1993)†. At each step, the program selects that
move which leads to the best expected outcome, given that the opponent is doing
the same, in the spirit of a non-cooperative game. The version of Deep Blue that
defeated Garry Kasparov in 1997 was able to calculate up to 200 billion moves in the

† Note that extensive tables of opening sequences and endgame sequences are also stored in
modern chess programs to assist with these phases of the game, though the bulk of the midgame
must be examined essentially by brute force.
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t = 0 t = T

Optimization of controls on horizon [0, T ].

Optimization of controls on horizon [Ta , Ta + T ].

Optimization of controls on horizon [2Ta , 2Ta + T ].

t = Ta t = Ta + T

t = 2Ta t = 2Ta + T

t = 3Ta
etc.

Figure 1. The sequence of events in receding-horizon predictive control. The heavy solid arrows
indicate the flow advancement. The evolution of the ‘actual’ flow response to several ‘test’ distribution
of controls is explored during the iterative flow prediction (dashed line) and adjoint computation
(dot-dashed line) stages, during which the control is optimized by a gradient algorithm. Once this
iteration converges, the flow is ‘advanced’ some portion Ta of the period T over which the control
was optimized, and the optimization process is begun anew.

three minutes it was allowed to conduct each turn. Even with this extreme number of
function evaluations at its disposal on this relatively simple problem, the algorithm
was only about an even match with Kasparov’s human intuition.

A similar brute-force optimization strategy based on function evaluations alone
might be suggested for the problem of turbulence control. In this context, so-called
‘genetic algorithms’ (Michalewicz 1996) are the primary candidates. The primary
strengths of these algorithms are their ease of programming and their ability to
minimize pathological functions in which gradient information is of limited usefulness.
Such algorithms are effective for low-dimensional optimization problems, even in
situations for which the evolution equation governing the system at hand is not
available, so long as the number of parameters to be optimized is not very large
(Padmanabhan, Bowman & Powell 1993; Koumoutsakos, Freund & Parekh 1998).
They may also be viable in high-dimensional optimization problems when function
evaluations can be performed extremely quickly (not the case with most DNS, but
may be realized experimentally for statistically stationary optimization problems)
and/or a very long time is given to conduct the optimization. In the case of the
optimization (by biological adaptation) of the drag-reducing ribbed surface on the
scales of fast-swimming sharks (see, e.g. Choi, Moin & Kim 1993 and Bechert et
al. 1997), the optimization has taken, literally, millions of years. As the present
optimization problem is very high-dimensional (up to O(107) control variables per
optimization horizon) and function evaluations (direct numerical simulations) are
very expensive, a more efficient optimization strategy is required.

An algorithm which is an improvement over the brute-force approach, suitable for
optimizing the present problem in a reasonable amount of time, is available because

(a) we know the equation governing the evolution of the present system, and
(b) we can formulate the problem of interest as a functional to be minimized.

Taking these two facts together, we will devise and solve an iterative procedure based
on gradient information, derived from an adjoint field, to optimize the controls for the
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desired purpose on the prediction horizon of interest in an efficient manner. Only by
exploiting such gradient information can the high-dimensional optimization problem
at hand be made tractable. Note that it is desirable that the optimization problems we
will formulate be constructed in such a manner that they are as well-conditioned (i.e.
non-pathological) as possible in order to make them amenable to efficient gradient-
based numerical optimization algorithms. To this end, several different formulations
of the present control problem are discussed in § 6.

It would seem that, in both the chess problem and the turbulence problem, the
further into the future one can optimize the problem the better; however, both
problems get exponentially harder to optimize as the prediction horizon is increased.
Since only intermediate-term optimization is tractable, it is not always the best
approach to represent the final objective in the cost functional. In the chess problem,
though the final aim is to capture the other player’s king, it is most effective to adopt
a mid-game strategy of establishing good board position and achieving material
advantage. Similarly, if the turbulence control objective is reducing drag, it is found
(see § 7) that it is most effective along the way to minimize a finite-horizon cost
functional related to the turbulent kinetic energy of the flow, since the turbulent
transport of momentum is responsible for inducing a substantial portion of the drag
in a turbulent flow. In a sense, turbulence is the ‘cause’ and high drag is the ‘effect’,
and it is most effective to target the ‘cause’ in the cost functional when optimizations
on only intermediate prediction horizons are possible.

In addition, a smart optimization algorithm allows excursions in the short term if
such a strategy leads to a long-term advantage. For example, in chess, a good player
is willing to sacrifice a lesser piece if, by so doing, a commanding board position is
attained and/or a restoring exchange is forced a few moves later. Similarly, by allowing
a turbulence control scheme to increase (temporarily) the turbulent kinetic energy of
a flow, a transient may ensue which, eventually, effectively diminishes the strength of
the near-wall coherent structures. It is shown in § 7 that terminal control strategies,
aimed at minimizing the turbulence only at the end of each optimization period,
appear to have an advantage over regulation strategies, which penalize excursions of
the turbulent kinetic energy over the entire prediction horizon.

2.2. Related approaches

The use of adjoint-based techniques to optimize controls for nonlinear systems in the
receding-horizon predictive control framework is well developed for both continuous-
time and discrete-time problem formulations. References on these topics include:
Bryson & Ho (1975), Garci, Prett & Morari (1989), Mayne & Michalska (1990),
Soeterboek (1992), Clarke (1994), Muske & Edgar (1997), and Sutton & Bitmead
(1999). These techniques are related to those used in (essentially time-invariant)
distributed optimization problems, such as the optimization of bioartificial arteries
(Petzold et al. 1997), the prediction of bone hardening due to applied periodic loading
(Jacobs et al. 1997), and the optimization of airfoils for aerodynamic design (Reuther
et al. 1996).

In the active feedback control setting, the predictive control technique has found
broad application and popular acceptance in applications for which the system of
interest evolves but slowly, such as in the chemical process industry (Seborg, Edgar
& Mellichamp 1989). In such applications, the system evolves so slowly that it may
be considered as ‘frozen’ in time, and a fast computer may be used to predict the
evolution of the system many times to determine iteratively the most suitable set of
controls to apply to the system over the given time horizon T . As mentioned earlier,
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given that the governing equation is known and a mathematical statement of the
control problem is available, it is a straightforward exercise to determine gradient
information with which the controls may be efficiently updated. The predictive control
approach is useful, for example, for determining a schedule of controls to switch
effectively from one set point in a chemical process to another, while keeping rise
time, overshoot, and settling time to a minimum. The predictive control approach
is very versatile, and is effective in otherwise problematical systems, including those
which are inherently nonlinear, those which contain saturation constraints and rate
constraints on the actuators, and those which are characterized by significant time
delays between application of the control and measurement of its effects (see, e.g.
Yang & Polak 1993).

Note that the present approach is sometimes referred to as Model Predictive
Control (MPC) in the controls literature. The ‘model’ of the fluid flow used in the
present work is direct numerical simulation, which is essentially an exact evolution
of the Navier–Stokes equation governing the system of interest. As the word ‘model’
in the fluids literature generally has the connotation of an approximate model, we
have, for clarity, chosen to drop the word ‘model’ from our description of the present
approach.

2.3. Predictive control optimization in the fluid mechanical setting

Turbulent flows, by most measures, are not slowly-evolving systems. In a practical im-
plementation, it is usually impossible to predict iteratively several possible evolutions
of a turbulent flow (resulting from several possible sequences of control application)
during a period of time short enough that the actual flow may be considered as
‘frozen’ in time. Thus, it is impossible to implement the predictive control algorithm
directly in a practical setting for the problem of turbulence. However, we can perform
such a procedure in a computer, where a turbulent flow may be (artificially) ‘frozen’ in
time. Such an exercise is not considered as simply an abstract Gedankenexperiment, as
it allows us to determine the system performance possible given a certain class of flow
actuation and qualify how optimized controls correlate with the near-wall coherent
structures believed to dominate the process of turbulence production in wall-bounded
flows. Further, various approaches have been proposed to distil practical feedback
schemes from the predictive control approach, as discussed in § 2.4. The present ex-
ercise is a necessary step in the development of such optimization algorithms for
practical feedback control rules.

The mathematical details of optimal control theory applied to the Navier–Stokes
equation and other nonlinear PDEs have a long and rich history which will not
be expounded here. Significant early advances in this area are well documented by
Morse & Feshbach (1953), Lions (1968), and Finlayson (1972). After something of
a hiatus in this area, there has been a resurgence of interest in the mathematical
properties of these approaches, such as existence and uniqueness of solutions and
proofs of convergence of proposed numerical algorithms. Abergel & Temam (1990),
Gunzburger, Hou & Svobodny (1990), Sritharan (1991, 1998), Gunzburger (1995),
Lagnese, Russell & White (1995), Fursikov, Gunzburger & Hou (1998), and Bewley
et al. (2000) discuss several of these recent advances.

Early attempts to implement predictive control with adjoint-based optimization
approaches compromised on the length of the prediction horizon, taking T+ . 1
(Bewley et al. 1993; Hill 1993; Lee, Kim & Choi 1998; etc.). This approach has
the dubious distinction of being dubbed the ‘suboptimal approximation’. The main
reason for making such an assumption is that it results in control rules which are easy
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to implement and solve, eliminating the tedious and impractical predictive control
framework. Another advantage of this approach is that, by approximating the nonlin-
ear terms with a Taylor series expansion of wall information (Hill 1993) or neglecting
the nonlinear terms altogether (Lee et al. 1998), the resulting problem can be solved
analytically, resulting in a control scheme in terms of wall information only. Though
schemes of this ‘suboptimal’ variety do give drag reductions in the neighbourhood
of 20% (Bewley et al. 1993; Hill 1993; Lee et al. 1998), this approach is recognized
to neglect the nonlinear evolution central to the development of turbulent flows.
The importance of using intermediate prediction horizons which at least partially
capture the evolution of the near-wall coherent structures is now readily apparent
(see § 7).

2.4. Adjoint-based ensemble optimization of practical control algorithms – a preview

The present work is a first step towards developing finite-horizon, adjoint-based
techniques for the optimization of practical feedback control rules for turbulent flows
of the two types illustrated in figure 2. The (initially undetermined) coefficients of the
feedback rules in both configurations may be optimized rigorously with predictive
approaches based on the adjoint analysis developed here (Bewley, Moin & Temam
1996). In this approach, an identical control rule is applied to large ensembles
(thousands) of control points on the walls of a representative turbulent flow (as
the flow considered is statistically homogeneous in the streamwise and spanwise
directions, this approach is reasonable). The gradient information determined by the
adjoint approach is then used to determine the sensitivity of the cost functional
to modification of the coefficients in this control rule (rather than modification of
the control distribution itself). If the ensemble is large enough with respect to the
complexity of the control rule being optimized, optimization via this approach should
lead to a set of coefficients which generalizes well to other turbulent flow realizations
with similar near-wall dynamics.

In the output feedback configuration, the flow is controlled using computationally
inexpensive direct feedback from instantaneous flow measurements. Note that the
structure of this feedback rule may be nonlinear and may incorporate a finite impulse
response (FIR) filter to account for information from past measurements in the
control rule.

In the estimator-based configuration, the filter used effectively establishes a time-
evolving estimate of the flow state near the wall, assimilating appropriately the
information contained in the available sequence of (noisy) flow measurements. The
model used in the estimator may in fact be the full Navier–Stokes equation or
(preferably) a reduced-order representation thereof, as discussed earlier. The flow is
then controlled with a (possibly nonlinear) control rule based on this flow estimate.
It is important that the system model used in the estimator should at least roughly
model the nonlinear dynamics of the full flow system (Bewley 1999).

In the linear case, the estimation problem and the control problem are linked only
when they are optimized in the non-cooperative game framework of ‘robust control’,
in which a finite component of ‘worst case’ noise is introduced which is maximally
detrimental to the control objective (Green & Limebeer 1995). Such an approach is
well developed for linear problems, and is referred to as H∞ control. Doyle et al.
(1989) present a compact form of this approach which makes it straightforward to
apply to linear problems, as illustrated in Bewley & Liu (1998) for the control of the
linear stages of transition. This non-cooperative game framework, which (albeit in
the brute-force context) is essential to the success of the chess algorithm (which is, in
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(a) (b)
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Figure 2. Examples of practical feedback control configurations based on limited noisy flow mea-
surements. The unknown feedback coefficients in both configurations may be optimized numerically
with the techniques based on the optimization approach developed in this paper. (a) Output feedback
configuration, (b) estimator-based configuration.

fact, a non-cooperative game), is also useful in the present problem. As discussed in
detail in Bewley & Liu (1998), this framework allows feedback gains to be kept to a
minimum for components of the system not relevant to the control problem at hand.
These reduced feedback gains result in reduced opportunity for improper feedback to
disrupt the closed-loop system.

New methods of applying the robust approach to distributed, fully nonlinear sys-
tems such as turbulence have also been mathematically investigated (Bewley et al.
2000). It appears likely that the robust aspect of the non-cooperative optimization
framework will be key to the effective implementation of feedback control of turbu-
lence when only limited noisy measurements are available.

3. Governing equation
The problem we consider in the present paper is the control of a fully developed

turbulent channel flow with full flowfield information available to the control algo-
rithm. The flow is governed by the incompressible Navier–Stokes equation inside a
three-dimensional rectangular domain Ω with unsteady wall-normal velocity bound-
ary conditions φ applied on the walls Γ±2 as the control, as depicted in figure 3. The
extent of the computational domain is chosen to be large enough in the homogeneous
directions (x1 and x3) that the convenient (though non-physical) periodic boundary
conditions applied in these directions have minimal effect on the nature of the near-
wall turbulence. This is illustrated qualitatively in figure 4 in § 5 and quantitatively
(by the decay of the spatial correlations of the turbulence to zero well before the edge
of the computational domain) in plots such as those represented in figures 5(a) and
6(a). Though this is an idealized geometry, it gives insight into the nature of near-
wall turbulence which can later be exploited in more practical configurations, such
as the control of a spatially developing boundary layer with discrete wall-mounted
actuators.

Three vector fields are first defined: the flow state q, the flow perturbation state q′,
and the adjoint state q∗:

q(x, t) =

(
p (x, t)

u(x, t)

)
, q′(x, t) =

(
p′(x, t)
u′(x, t)

)
, q∗(x, t) =

(
p∗(x, t)
u∗(x, t)

)
.
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Figure 3. Channel flow geometry. The interior of the domain is denoted Ω and the boundaries of
the domain in the xi-direction are denoted Γ±i . Unsteady wall-normal velocity boundary conditions
are applied on the walls Γ±2 as the control, with periodic boundary conditions applied in the
streamwise direction x1 and spanwise direction x3.

Each of these vector fields is composed of a pressure component and a velocity
component, all of which are continuous functions of space, x, and time, t. The
velocity components themselves are also vectors, with components in the streamwise
direction x1, the wall-normal direction x2, and the spanwise direction x3. Partial
differential equations governing all three of these fields will be derived in due course,
and the motivation for introducing q′ and q∗ will be given as the need for these
fields arises in the control derivation. Only after the control problem has been derived
completely in differential form is it discretized in space and time. For the current
three-dimensional nonlinear problem (which necessitates a mixture of implicit and
multi-step explicit schemes for accurate time advancement, with incompressibility
enforced by an involved fractional step algorithm), this approach (referred to as
‘optimize then discretize’) is found to yield adjoint systems which are the easiest to
understand and to code. For simpler systems, such as the one-dimensional linear
problem of transition control examined in Bewley & Liu (1998), the discrete control
expressions derived from the discrete form of the governing equation are found to be
tractable (a setting referred to as ‘discretize then optimize’). Note that the processes
of optimization and discretization, in general, do not commute, and thus these two
approaches are not necessarily equivalent even upon refinement of the space/time
grid (Vogel & Wade 1995).

The governing equation may be written functionally as

N(q) =

(
0

−rPx(x, t)
)

in Ω, (3.1a)

where N(q) is defined below in (3.3) and r is a unit vector in the x1-direction. An
external pressure gradient Px is applied to induce a mean flow in the x1-direction. The
boundary conditions on the state q are assumed to be periodic in the streamwise and
spanwise directions (for computational simplicity), and a wall-normal control velocity
is distributed over the walls such that

u = −φ n on Γ±2 , (3.1b)

where n is the unit outward normal to the boundary ∂Ω. Initial conditions on the
velocity are prescribed such that

u = u0 at t = 0. (3.1c)
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The flow is sustained by an externally applied† mean pressure gradient (per unit
mass) Px in the streamwise direction; this mean pressure gradient may be either a
fixed constant or modified at each time step in order to maintain a constant mass
flux through the channel. The control φ is constrained to inject zero net mass at the
walls, such that ∫

Γ+
2

φ dx =

∫
Γ−2
φ dx = 0 ∀t. (3.2)

Note that boundary conditions and initial conditions on the pressure p are not
needed for a well-posed problem formulation. Mathematically speaking (Temam 1984;
Abergel & Temam 1990; Bewley et al. 2000), the control derivation presented in this
paper may be conducted on a divergence-free submanifold of (L2(Ω))3, in which the
pressure has been removed from the governing equation using the Leray–Helmholtz
formulation of the Navier–Stokes equation. This ‘abstract form’ of the incompress-
ible Navier–Stokes equation facilitates mathematical analysis. In the present paper,
however, we will retain the pressure in our derivations; this more intuitive form both
eases the treatment of inhomogeneous boundary conditions and facilitates the direct
extension of the present analysis to compressible flows, as discussed in Appendix B.

For clarity, all differential equations are written in operator form in this discussion,
with these operators defined when first introduced. The (nonlinear) Navier–Stokes
operator for the present case, in which the flow is assumed to have uniform density
and viscosity, is given by

N(q) =


∂uj

∂xj
∂ui

∂t
+
∂ujui

∂xj
− ν ∂

2ui

∂x2
j

+
∂p

∂xi

 . (3.3)

Note that p is the pressure divided by the density and ν is the kinematic viscosity.
Define also τw/ρ , −ν ∂u1/∂n|Γ±2 as the mean skin friction on the wall for the

uncontrolled turbulent channel flow divided by the density (averaged in space and
time), uτ , (τw/ρ)1/2 as the mean friction velocity, δ as the channel half-width, and
Reτ , uτδ/ν as the Reynolds number based on the mean friction velocity and the
channel half-width. The flows considered in this work are constant mass flux flows
at Reτ = 100 and Reτ = 180. (This corresponds to Reynolds numbers based on the
mean centreline velocity of the uncontrolled flow, Rec = ucδ/ν, of Rec = 1712 and
Rec = 3247, and to Reynolds numbers based on the bulk velocity, ReB = uBδ/ν, of
ReB = 1429 and ReB = 2797.) All velocities are normalized by the friction velocity uτ,
and therefore may also be marked with a + superscript. All lengths are normalized by
δ unless marked with a + superscript, in which case they are normalized by the wall
unit ν/uτ. All times are normalized by δ/uτ unless marked with a + superscript, in
which case they are normalized by ν/u2

τ . Note that, with this normalization, ν = 1/Reτ
in the above equation for N(q).

† By this, we mean that the mean pressure gradient is a quantity which is considered as constant
when computing the adjoint field q∗ and the gradient DJ/Dφ. The opposite viewpoint may also
be taken in this framework; namely, the mean pressure gradient may be taken as a (scalar) variable
and included together with the distributed field variable q in the optimization process. In this
framework, an integral constant mass flux constraint is included together with the PDE governing
the system (the Navier–Stokes equation) in the governing equation set. This formulation is a bit
more cumbersome and leads to essentially the same results.
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4. Numerical method
The control formulations discussed in § 2 (and to be presented in greater detail in
§ 6) were tested in direct numerical simulations of constant mass flux, fully developed
turbulent channel flows at both Reτ = 100 and Reτ = 180. The coarse-grid, inexpensive
lower Reynolds number simulations were used to perform parametric studies to
determine the appropriate range of parameters to test more accurately on a finer grid
at the higher Reynolds number. In the present work, Fourier transform techniques
are used to compute spatial derivatives in the homogeneous directions with 3/2
dealiasing of the nonlinear terms, and an exactly energy-conserving second-order
finite difference scheme is used to compute spatial derivatives on the stretched grid in
the wall-normal direction. Very fine grid resolution is required near the wall to resolve
the shear layer; the mesh is fairly fine even up to the centre of the domain because
the second-order difference scheme used to compute the derivatives in this direction
is numerically dispersive. The computational grid is staggered in the wall-normal
direction to prevent decoupling of the even and odd modes of the pressure.

A substantially different numerical method was needed in the present computations
than was used in, for example, the fully spectral code of Kim, Moin & Moser (1987),
in order to best facilitate implementation of the wall-normal velocity boundary
conditions. The flow is advanced in time using an explicit low-storage third-order
Runge–Kutta method for all terms involving x1- and x3-derivatives and an implicit
Crank–Nicholson method at each Runge–Kutta substep for all terms involving x2-
derivatives, with a method based on that of Akselvoll & Moin (1995). A temporal
discretization implicit in the x2-derivatives is necessary to mitigate the CFL time step
restriction when control is applied, as the control fluid at the wall is directed in the
x2-direction, which is precisely the region and direction in which the mesh must be
refined most to resolve the shear layer. Unfortunately, this implicit time advancement
necessitated the use of a finite-difference scheme in the wall-normal direction rather
than the (more accurate) Chebyshev approach.

For the Reτ = 180 simulations, the number of Fourier modes used† is 170×129×170
in the x1-, x2- and x3-directions respectively (i.e. 256×129×256 dealiased collocation
points), and the size of the computational domain in wall units is L+

1 = 2260,
L+

2 = 360, L+
3 = 1130. The resulting effective grid resolution in the streamwise and

spanwise directions (on collocation points determined without the extra 3/2 padding)
is ∆x+

1 = 13, ∆x+
3 = 7. Hyperbolic tangent stretching of the grid is used in the

wall-normal direction, resulting in a grid spacing of ∆x+
2 = 0.6 adjacent to the wall

and ∆x+
2 = 5.2 in the centre of the channel.

For the Reτ = 100 simulations, the number of Fourier modes used† is 42× 65× 42
(i.e. 64 × 65 × 64 dealiased collocation points), and the size of the computational
domain is L+

1 = 1260, L+
2 = 200, L+

3 = 420. The resulting effective grid resolution in
the streamwise and spanwise directions is ∆x+

1 = 30, ∆x+
3 = 10. The wall-normal grid

spacing is ∆x+
2 = 0.7 adjacent to the wall and ∆x+

2 = 5.8 in the centre of the channel.

5. Dynamics and statistics of uncontrolled system
The nature of a turbulent flow is characterized well by observing the fluid at

various points throughout the channel in a reference frame which moves with the

† The number of modes used in the homogeneous directions for the fast Fourier transforms
(FFTs), which is expanded by a factor of 3/2 to dealias the nonlinear terms, is an even power of
two, which results in maximum efficiency of the FFT routines.
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(a)

(b)

Figure 4. Fully developed turbulent channel flow realization at Reτ = 180, no control. Regions of
the flow with positive discriminant D > Dthreshold are shaded, indicating fluid motion which, in a
pointwise sense, is vortical in nature. In the three-dimensional visualization (a), the flow is from
lower left to upper right and, for clarity, only one quarter of the lower half of the domain Ω used in
the computations (see figure 3) is shown. In the crossflow visualization (b), for clarity, the crossflow
velocity vectors (indicated by the arrows) are marked on only one ninth of the gridpoints used in
the computations in this crossflow plane.

local velocity. In this reference frame, the point under consideration is a critical
point, as the local streamline slope is indeterminate. Thus, a critical point analysis of
the type discussed by Perry & Chong (1987), Chong, Perry & Cantwell (1990), and
Blackburn, Mansour & Cantwell (1996) is appropriate. A single scalar quantity D, the
discriminant of the velocity gradient tensor, provides a useful identification of regions
in the flow which, in this context, are ‘focus’ in nature. Such focus regions roughly
correspond to ‘vortex-type’ regions in a turbulent flowfield, though this description is
only pointwise in nature.

The velocity gradient tensor discussed in this work is defined in wall units Aij ,
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∂u+
i /∂x

+
j . The second and third invariants of A are Q , {[tr(A)]2 − tr(A2)}/2 and

R , − det(A). The discriminant of the velocity gradient tensor is given by D =
(27/4)R2 + Q3. Regions with D > 0 are characterized by a velocity gradient tensor
with one real and two complex eigenvalues (and thus a swirling, vortex-type motion
in the Lagrangian reference frame discussed above), whereas regions with D 6 0
are characterized by three real eigenvalues. As illustrated in figure 4, visualizations
of isosurfaces of the discriminant of the velocity gradient tensor provide a handy
identification technique for the location of ‘vortex-type’ motions in the turbulent flow.
For clarity, the visualizations of the discriminant presented in this work identify only
regions of positive discriminant greater than a small threshold value D > Dthreshold,
where Dthreshold = 10−5.

As direct numerical simulations produce a tremendous amount of data, it is
important to analyse relevant statistics of the flowfields they generate, in addition to
the instantaneous visualizations, in order to understand better the phenomena taking
place in a quantitative sense and how these integral measures of the turbulence are
modified by the application of control. Gross flowfield statistics useful for monitoring
the time evolution of the flow include the total drag and the turbulent kinetic
energy (TKE). The statistics used in the present work to examine the variation of
the turbulence with distance from the wall x2 are the mean velocity u1, the root-
mean-square velocity fluctuations ui,rms, the Reynolds stress −u1u2, the total stress

−u1u2 + ν ∂u1/∂x2, and the two-point correlations Rij(r) , ui(x) uj(x+ r) and their
Fourier transform, the spectra Eij(k). Note that the overbar implies averages in the
homogeneous directions x1 and x3 and, when the flow is statistically stationary, in time.
At times we will distinguish the fluctuating component of the flow v separately from
the mean component u such that u = u+ v. Further discussion of these statistics and
their behaviour in uncontrolled turbulent channel at Reτ = 180 may be found in Kim
et al. (1987). Selected statistics from the present computations at Reτ = 100 and Reτ =
180 are shown in figures 5 and 6. Quantitative comparison of the Reτ = 180 statistics
reported in figure 6 with the benchmark computations of Kim et al. (1987) indicate
that the numerical method used in the present computations is sufficiently accurate.

6. Application of optimal control theory to incompressible turbulence
The present section briefly derives the control approach used, without getting into

the mathematics regarding the rigorous proofs of existence and uniqueness of the
solution to the control problem or the convergence of the numerical algorithm. The
notation is adapted from Abergel & Temam (1990) and Bewley et al. (2000), to
which readers are referred for discussions regarding these mathematical issues and
the generalization to the robust control (i.e. non-cooperative game) setting.

6.1. Statement of physical problem: definition of cost functional

The optimal control problem is akin to a problem of economics; the first step in
solving it is to represent the problem of interest as a cost functional, J(φ), to be
minimized†. The performance of the control algorithm for this type of problem is

† In the approach taken here, the state equation is, effectively, taken into account in the cost
functional J(φ), and the minimization is performed with respect to the control variable φ alone.
Another approach, sometimes referred to as the ‘all at once’ approach, is to write the cost functional
asJ(u, φ) and to write the state equation separately, applying this equation as a feasibility constraint
on the state u rather than incorporating it when computing the gradient of the cost functional
(Heinkenschloss 1997). The former approach appears to be more easily managed numerically in
systems with very large state dimension.
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Figure 5. Selected time-averaged statistics of the uncontrolled turbulent channel flow at Reτ = 100:
(a) spanwise two-point correlations at x+

2 = 5.4; (b) spanwise one-dimensional energy spectra at
x+

2 = 5.4; (c) profiles of r.m.s. velocity fluctuations (left-hand scale) and mean velocity (right-hand
scale): (d) profiles of Reynolds stress (———) and total stress (−−−−).

quite sensitive to the cost functional definition, and thus this topic warrants a detailed
analysis in the context of the flow physics under consideration. In the present problem,
control φ is to be applied to minimize the drag averaged over a representative wall
section and a long time horizon using the least amount of control effort possible. At
present, it appears as if optimization of the nonlinear Navier–Stokes control problem
over an infinite time horizon, which would require the solution of a very difficult
Hamilton–Jacobi–Bellman (HJB) problem in infinite dimension (Sritharan 1991), is
computationally intractable. However, optimizations on intermediate time horizons
(i.e. T+ ≈ O(25)) certainly are tractable. Thus, we must choose at the outset a
‘design’ time horizon over which we will determine controls which optimize the given
objective; without loss of generality, let us consider the optimization horizon (0, T ).

Case (a): minimization of drag
A relevant cost functional for the minimization of drag on the walls Γ±2 and over

the horizon (0, T ) with finite control effort is

JDRAG(φ) = −d1

∫ T

0

∫
Γ±2
ν
∂u1(φ)

∂n
dx dt+

`2

2

∫ T

0

∫
Γ±2
φ2 dx dt.
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Figure 6. As figure 5 but at Reτ = 180.

The first term is a measure of exactly that quantity we would like to minimize†: in
this case, the drag due to skin friction (note that the negative sign is needed because
∂/∂n , n · ∇, where n is defined as an outward facing normal). The second term is
a measure of the magnitude of the control. These quantities are integrated over the
wall section and time period under consideration and weighted together with a factor
`2, which represents the price of the control. This quantity is small if the control
is ‘cheap’ (which reduces the significance of the latter term and generally results in
greater control effort), and large if applying control is ‘expensive’.

Dimensional constants di, which are the appropriate functions of the kinematic
viscosity ν, the channel half-width δ, and the friction velocity uτ, are included in all
cost functionals we will consider simply to make them dimensionally consistent.

Case (b): regulation of turbulent kinetic energy
As only an intermediate value of T can be afforded, minimization of a cost

functional representing exactly the quantity of interest (drag) is not necessarily the
most effective means of reducing the quantity of interest over the long term (as
t → ∞). As discussed earlier, turbulence causes wall-normal convective transport

† Note that the drag reduction problem is a minimization problem, not a regulation problem;
solutions in which the first term of JDRAG are negative, if they exist, are preferred over those in
which this term is zero. It is shown in Bewley et al. (2000) that posing this type of cost functional
(linear in the flow variable rather than quadratic in the flow variable) in no way hampers the proofs
of existence and uniqueness of the solution of the control problem.
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in the near-wall region which, in turn, increases the drag, heat transport, and scalar
mixing in the flow. It is thus reasonable for the cost functional to target the turbulence
(the ‘cause’) over each finite optimization horizon rather than the drag increase due
to the turbulence (the ‘effect’). More precisely, such a cost functional might target the
time-averaged value of the turbulent kinetic energy (TKE); a relevant cost functional
for this formulation is†

JTKE(reg)(φ) =
d2

2

∫ T

0

∫
Ω

|u(φ)|2 dx dt+
`2

2

∫ T

0

∫
Γ±2
φ2 dx dt.

Case (c): regulation of enstrophy
Among mathematical audiences, regulation of the square of the vorticity (i.e. the

enstrophy) is sometimes preferred over the regulation of the turbulent kinetic energy.
This preference is well-founded mathematically, as:

1. The Poincaré inequality implies that regulation of enstrophy (or the H1-norm
of the turbulent field) directly results in regulation of turbulent kinetic energy (the L2-
norm of the turbulent field). Mathematically speaking, in a continuous formulation,
the converse is not necessarily true (though, once discretized, the two norms are
‘equivalent’ up to a very large constant).

2. The Sobolev inequalities used for bounding the influence of the nonlinear term
on a system governed by the Navier–Stokes equation are related to the H1-norm of
the turbulent field.
The cost functional appropriate for enstrophy regulation is

JENS(reg)(φ) =
d3

2

∫ T

0

∫
Ω

|∇× u(φ)|2 dx dt+
`2

2

∫ T

0

∫
Γ±2
φ2 dx dt.

For the special case of locally isotropic turbulence, there is a particularly simple
relationship between the one-dimensional energy spectra and the one-dimensional
enstrophy spectra, as shown in figure 7.

On physical grounds, it may be argued that controlling the turbulent kinetic energy
is more effective than controlling the enstrophy. The explanation for this, at least in
homogeneous isotropic turbulence, is classical (see figure 7): the low wavenumbers of
turbulence generally feed the high wavenumbers, where the turbulent kinetic energy
is effectively dissipated by viscosity. In this well-known ‘turbulent cascade’, it is the
low wavenumbers that acquire the turbulent kinetic energy from the energy of the
mean flow, and thus it is those which should be targeted by the cost functional. Using
enstrophy in the cost functional, however, effectively weights the high wavenumbers
of the turbulence spectrum by a factor of k2. Further, the turbulent cascade of
energy from the low wavenumbers to the high wavenumbers takes a finite amount
of time which may not be small with respect to the optimization horizons T+ which
can be afforded in the simulations. Thus, for intermediate optimization horizons,
T+ ≈ O(25), perhaps one may identify the large spatial scales of the turbulence
as the ‘cause’ of the phenomena of interest and therefore favour cost functionals
which emphasize those. In addition, formulations derived from enstrophy-based cost
functionals, which focus on the turbulence at the dissipation scales, require much

† Note that, strictly speaking, JTKE(reg)(φ) is influenced both by the turbulent kinetic energy∫ T
0

∫
Ω
|v(φ)|2 dx dt and the effect of the mean field,

∫ T
0

∫
Ω
|ū(φ)|2 dx dt. It was found in the

present study (apparently due to the zero-mass-flux constraint (3.2) that formulations based on∫ T
0

∫
Ω
|v(φ)|2 dx dt and those based on

∫ T
0

∫
Ω
|u(φ)|2 dx dt give essentially identical results.
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Figure 7. Kolmogorov’s universal scaling for locally isotropic one-dimensional spectra ((a) energy
spectra, (b) enstrophy spectra), from Saddoughi & Veeravalli (1994), for a variety of different
turbulent flows; see Saddoughi & Veeravalli (1994) for descriptions of the various different exper-
iments reported in this figure and discussion of the important effects of non-isotropy. A common
explanation of turbulence is that turbulent energy is extracted from the mean-flow kinetic energy
or potential energy at the low wavenumbers (large spatial scales), this energy cascades through the
‘inertial range’ by a vortex stretching phenomenon which transfers energy to higher wavenumbers,
and the energy is ultimately dissipated by viscosity at the high wavenumbers (small spatial scales).
The higher the Reynolds number, the longer this inertial range. As the energy cascade is largely
unidirectional, the ultimate rate of turbulence dissipation at the small spatial scales is effectively set
by the behaviour of the turbulence at the large spatial scales. As indicated in this figure, considera-
tion of the energy in the cost functional focuses control effort primarily on the low wavenumbers of
the turbulence spectrum, where the ‘driving mechanisms’ for turbulence lie, whereas consideration
of the enstrophy in the cost functional focuses control effort on the high wave numbers of the
turbulence spectrum, where the turbulence is dissipated.

smaller actuators than formulations derived from TKE-based cost functionals, which
focus on the largest coherent motions of the turbulence. Such actuators might be
much more challenging to build. These arguments favour TKE-based strategies over
enstrophy-based strategies despite the mathematical preference (based on the Poincaré
and Sobolev inequalities) to the contrary.

Case (d): regulation of large-scale and intermediate-scale structures
Due to considerations of both the physics of the phenomena at hand and its

realization in hardware, we have argued that it might be better to control the large
scales of turbulence rather than the small scales. We now show how this line of
reasoning may be pursued even further. The idea is to select for the cost functional
definition lower norms (e.g. H−1, H−2, etc.) on the flow term and higher norms (e.g.
H1, H2, etc.) on the control term. This is now illustrated with a single example:

JLARGE(reg)(φ) = −d4

2

∫ T

0

∫
Ω

u(φ) · ∆−1u(φ) dx dt− `2

2

∫ T

0

∫
Γ±2
φ∆φ dx dt.

Note that the term ξ , ∆−1u is easily found by solving a Poisson equation u = ∆ξ
with appropriate boundary conditions.

Effectively, such a cost functional targets a ‘smoothed’ version of the velocity field
u, weighting most heavily the low spatial wavenumbers of the velocity field, while
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Figure 8. Excess energy production, P− ε, in wall units, as a function of distance from the wall.
Data compiled by Jimenez (1999), for uncontrolled turbulent channel flows at: ———, Reτ = 180;
−−−−, Reτ = 395; — ·—, Reτ = 590; see Jimenez (1999) for descriptions of the various different
computations reported in this figure.

it penalizes the component of the control φ which is not smooth, weighting most
heavily the high spatial wavenumbers of the control. Control formulations based on
cost functionals with even greater emphasis on the large-scale structures follow in
a natural manner from this example by taking higher powers of (−∆), and are left
as an exercise to the reader. Note that this smoothing can also be extended to the
temporal fluctuations by replacing the spatial operators (−∆) above with the operator
(∂/∂t− ν∆); this particular type of smoothing is motivated by the linear terms of the
Navier–Stokes equation itself.

In a turbulent channel flow at statistical equilibrium, the equation expressing the
production, redistribution, and dissipation of the turbulent kinetic energy, referred to
as the turbulent energy budget (Tennekes & Lumley 1972), is

∂

∂x2

(v2 p+ 1
2
vi vi v2 − 2ν vi si2︸ ︷︷ ︸

energy flux

) = −v1 v2

∂u1

∂x2︸ ︷︷ ︸
P

− 2ν sij sij︸ ︷︷ ︸
ε

,

where sij , 1/2 (∂vi/∂xj + ∂vi/∂xj) and vi = ui − ui denotes the fluctuating compo-
nents of the velocity field. The energy flux terms serve to redistribute the turbulent
energy from one point in the flow to another. The ‘production’ term P normally
extracts energy from the mean flow u1 to ‘feed’ the turbulent energy cascade, whereas
the viscous dissipation term ε dissipates energy from the turbulent cascade to the
local environment by molecular (viscous) heating. The variation of the excess of
production minus dissipation as a function of distance from the wall is shown in
figure 8.

A substantial counter-argument to that for control of primarily the large scales of
the turbulence may now be made for the case of wall-bounded turbulence treated in
the present paper. The production of turbulence at the length scales of the coherent
structures in the ‘inner layer’ near the wall (x+

2 . 60) is thought by some to have
important communication with the larger scales in the outer layer via an ‘inverse
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cascade’ of energy† (Jimenez 1999). As illustrated in figures 5(a) and 6(a), there is
a clear ‘coherent-structure scale’ to the turbulence near the wall of about 50 wall
units which (at least, at the higher Reynolds numbers of engineering significance)
certainly must be considered as intermediate between the large outer scales and the
small dissipation scales. As shown in the P− ε spike of figure 8 near x+

2 ≈ 12, it is
this near-wall turbulence which dominates the turbulence production in the turbulent
energy budget. This observation extends at least over the limited range of Reynolds
numbers reported in the DNS results compiled in this figure. One may therefore
hypothesize that the coherent structures themselves are a primary ‘cause’ of the entire
spectrum of wall-bounded turbulence, and target the flow perturbations at the specific
length scale of these flow structures by employing a ‘bandpass filter’ of sorts. A very
simple and algebraically convenient form of such a bandpass filter may be defined
such that

JINT(reg)(φ) = −d5

2

∫ T

0

∫
Ω

u(φ) · ∆−1
B u(φ) dx dt− `2

2

∫ T

0

∫
Γ±2
φ∆Bφ dx dt.

where

∆B = ∆S + ∆−1
S with ∆S = L2

c∆ and L+
c = 50.

To motivate the use of such a filter, note that, in a spectral direction, the influence of
this filter on the Fourier transform of the velocity field is ∼ k2/(k4 + k4

c ), a function
which is small for both large k and small k and peaks at the wavenumber of interest,
kc, of the near-wall coherent structures. As for the large-scale filter, powers of (−∆B)
may be used for faster roll-off away from the spatial wavenumber of interest.

For high Reynolds number flows, a counter-argument may be made to that for
the control of the coherent-structure scale of the flow. The phenomenon central to
this argument, known as ‘shear sheltering’, is perhaps best known for the problem
of plasma confinement in a tokamak fusion reactor, for which reversed magnetic
shear greatly reduces the energy flux in the plasma (Kepner, Parker & Decyk 1997).
Though the problems of fluid turbulence and plasma turbulence are fundamentally
different, Hunt & Durbin (1999) propose that the region of high shear might similarly
insulate the near-wall region from the outer region of a high-Reynolds-number
turbulent boundary layer. Jacobs & Durbin (1998) provide some evidence for this by
examination of linear fluctuations to a mean boundary-layer profile, observing that
the shapes of the eigenmodes corresponding to the discrete and continuous spectra of
the Orr–Sommerfeld equation are supported only in the near-wall and outer regions
respectively. If, as this argument implies, the high shear of a high-Reynolds-number
turbulent flow successfully blocks the major fraction of the turbulent cascade of
energy across the high shear region, it may indeed be better to target the large spatial
scales (to affect the outer-layer structures) rather than the coherent-structure scales
(to affect the near-wall structures).

As there are many fewer degrees of freedom in the large scales or intermediate
scales of turbulence than there are in its complete spectrum, formulations which target

† Note that a convincing argument can be made about the importance of the cascade of energy
from small scales to large scales in turbulent flows in general. Gibson (1996) observes that in
most flows of engineering interest (homogeneous isotropic turbulence being the notable exception),
vorticity is introduced into irrotational regions in the flow at the small viscous scales through thin
shear layers. If ‘turbulence’ is defined as the region in the flow where inertial forces (v×ω) dominate
viscous forces, then the irrotational regions of the flow (ω = 0) must certainly be described as
‘non-turbulent’, and the importance of the so-called ‘inverse cascade’ (from small scales to large
scales) in the overall energy budget is readily apparent.
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either large-scale or coherent-structure-scale fluctuations in the flow might be expected
to be better behaved numerically than TKE-based formulations, as the optimizations
they entail are, effectively, lower dimensional and thus easier to perform. Though
it is still the topic of some debate precisely which scales should be targeted by the
control algorithm, the present method is sufficiently general to target whichever scales
are of interest. Indeed, an interesting future use of the approach developed in this
paper, once computers become fast enough to consider higher Reynolds numbers in
this framework, is to shed light on this argument by comparing the effectiveness of
controls targeting the large scales of turbulent boundary layers with that of controls
targeting the coherent-structure scales of turbulent boundary layers.

Case (e): terminal control of turbulent kinetic energy
As described at the end of § 2.1, it is appropriate to consider a cost functional which

targets the terminal value (i.e. the value at the end of each optimization horizon) of
the quantity of interest. We will illustrate with the example of the terminal control
of turbulent kinetic energy. With the terminal control approach, the cost functional
is not penalized for excursions of the turbulent kinetic energy during the middle of
each optimization horizon, so long as these excursions lead to reduced values of the
turbulent kinetic energy at the end of each optimization horizon. As referred to in the
chess analogy, this is akin to ‘sacrificing’ a piece in order to obtain long-term gain. A
relevant cost functional for this approach is

JTKE(ter)(φ) =
d6

2

∫
Ω

|u(φ;T )|2 dx+
`2

2

∫ T

0

∫
Γ±2
φ2 dx dt.

6.2. Gradient of cost functional: general discussion

As suggested by Abergel & Temam (1990), a rigorous procedure may be developed to
determine the sensitivity of a cost functional J to small modifications of the control
φ for Navier–Stokes control problems of this sort. To do this, consider the linearized
perturbation J′ to the cost functional J resulting from an arbitrary perturbation φ′
to the control φ. The quantity J′ may be defined by a limiting process as the Fréchet
differential (Vainberg 1964) of the cost functional J with respect to φ such that

J′(φ;φ′) , lim
ε→0

J(φ+ εφ′)−J(φ)

ε
,

∫ T

0

∫
Γ±2

DJ(φ)

Dφ φ′ dx dt. (6.1)

For the cases of interest here, the linearized cost functional perturbations J′ resulting
from a control perturbation φ′ may be written as†

J′DRAG(φ;φ′) = −d1

∫ T

0

∫
Γ±2
ν
∂u′1
∂n

dx dt+ `2

∫ T

0

∫
Γ±2
φφ′ dx dt,

J′TKE(reg)(φ;φ′) = d2

∫ T

0

∫
Ω

u · u′ dx dt+ `2

∫ T

0

∫
Γ±2
φφ′ dx dt,

J′ENS(reg)(φ;φ′) = −d3

∫ T

0

∫
Ω

∆u · u′ dx dt+ `2

∫ T

0

∫
Γ±2
φφ′ dx dt,

† Note that, for the remainder of this discussion, the functional dependence of u on φ is
suppressed for notational clarity.
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J′LARGE(reg)(φ;φ′) = −d4

∫ T

0

∫
Ω

∆−1u · u′ dx dt− `2

∫ T

0

∫
Γ±2

∆φφ′ dx dt,

J′INT(reg)(φ;φ′) = −d5

∫ T

0

∫
Ω

∆−1
B u · u′ dx dt− `2

∫ T

0

∫
Γ±2

∆Bφφ
′ dx dt,

J′TKE(ter)(φ;φ′) = d6

∫
Ω

u(T ) · u′(T ) dx+ `2

∫ T

0

∫
Γ±2
φφ′ dx dt,

where u′ is the Fréchet differential of u, as defined in the following subsection, and
where we have made use of the identity ∆u = −∇ × (∇ × u) (for ∇ · u = 0) and the
fact that the curl operator (∇×), the Laplacian (∆), and the bandpass filter (∆B) are
self-adjoint.

For each of the cost functionals under consideration, the linearized cost functional
perturbation J′ will be expressed as a simple linear convolution of some function of
an appropriately defined adjoint field q∗ with the control perturbation φ′, in a form
identical to the right-hand side of (6.1). As the resulting expression holds for arbitrary
φ′, the gradient DJ(φ)/Dφ may be identified immediately with this function of the
solution to the adjoint problem. Mathematically, we say that DJ(φ)/Dφ is identified
in a ‘weak’ sense by such a procedure. Note that, in a finite-dimensional setting (i.e.
when the problem is discretized in space and time), the gradient takes the form of a
Jacobian of the scalar quantity J(φ) with respect to the individual components of
the (very high-dimensional) discretized vector φ.

With the gradient information so determined, any control φ on (0, T ) may be
updated in the direction that, at least locally (i.e. for infinitesimal control updates),
most effectively reduces the cost functional of interest. The finite distance the control
is updated in this direction is determined with a line minimization algorithm. (This
makes the iteration procedure very efficient and stable, even when considering inher-
ently nonlinear phenomena, by guaranteeing that the cost functional of interest at
least will not increase from one iteration to the next.) The flow resulting from this
updated control is then computed, the sensitivity of this new flow to further control
modification is determined via the computation of a new adjoint field, and the process
repeated. Upon convergence of this iteration, which locally optimizes the control over
the interval (0, T ), the flow is advanced with the optimized controls over the horizon
(0, Ta), where Ta 6 T , and an iteration for the optimal control over a new time
horizon begins anew on the interval (Ta, Ta + T ), as discussed in the introduction to
the receding horizon framework given in § 2.1.

Note that, as opposed to the controls computed near the beginning of each
optimization horizon, the controls computed near the end of each optimization
horizon are determined without regard to the (inevitable) further development of the
flow. The controls near the end of each optimization horizon (on (Ta, T )) may thus
not be as effective as the controls near the beginning of each optimization horizon
(on (0, Ta)) for long-time regulation of the system (i.e. looking beyond the interval
(0, T ) represented in the cost function). Thus, in the standard ‘receding horizon model
predictive control’ framework (see, e.g. Soeterboek 1992 and Bitmead, Gevers & Wertz
1990 for further details), the controls on (Ta, T ) are often discarded and recalculated
in the following optimization horizon. This is analogous to the repeated re-evaluation
of the game plan necessary after each move played during a game of chess: one
optimizes the game plan over several moves, plays just one move, then repeats the
optimization process. To expediate the computations, all computations reported here
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in fact take Ta = T except for one curve reported in figure 15, where the issue of
taking Ta < T is revisited.

6.2.1. Linearized perturbation field

Now consider the linearized perturbation q′ to the flow q resulting from a per-
turbation φ′ to the control φ. Again, the quantity q′ may be defined by the limiting
process of a Fréchet differential such that

q′ , lim
ε→0

q(φ+ εφ′)− q(φ)

ε
. (6.2)

For the purpose of gaining physical intuition, it is useful to note that the quantity
q′, described above as a differential quantity, may instead be defined as the small
perturbation to the state q arising from a small control perturbation φ′ to the control
φ. In such derivations, the notation δφ and δq, denoting small perturbations to φ
and q, is used instead of the differential quantities φ′ and q′. The two derivations
are roughly equivalent, though the present derivation does not assume that primed
quantities are small, rather, only that they are defined by a limiting process such as
(6.2).

The equation governing the dependence of the linearized flow perturbation q′ on
the control perturbation φ′ may be found by taking the Fréchet differential of the
state equation 3.1. The result is

N′(q)q′ = 0 in Ω, (6.3a)

u′ = −φ′n on Γ±2 , (6.3b)

u′ = 0 at t = 0, (6.3c)

where the linearized Navier–Stokes operation N′(q)q′ is given by

N′(q) q′ =


∂u′j
∂xj

∂u′i
∂t

+
∂

∂xj
(uju

′
i + u′jui)− ν ∂

2u′i
∂x2

j

+
∂p′

∂xi

 . (6.4)

The operation N′(q) q′ is a linear operation on the perturbation field q′, though the
operator N′(q) is itself a function of the solution q of the Navier–Stokes problem –
note the presence of the velocity field u in (6.4). Equation (6.3) thus reflects the linear
dependence of the perturbation field q′ in the interior of the domain on the control
perturbation φ′ at the boundary. However, the implicit linear relationship q′ = q′(φ′)
given by this equation is not yet tractable for expressing J′ in a form similar to the
right hand side of (6.1), from which DJ(φ)/Dφ may be deduced. For the purpose
of determining a more useful relationship with which we may determine DJ(φ)/Dφ,
we now appeal to an adjoint identity.

6.2.2. Derivation of adjoint identity

This subsection derives the adjoint of the linear partial differential operatorN′(q).
For readers not familiar with this approach, a review of the derivation of an adjoint
operator for a very simple case in the present notation is given in Appendix A.
The adjoint derivation presented below extends in a straightforward manner to more
complex equations, such as the compressible Euler equation, as shown in Appendix B
(again, using the same notation). Such generality highlights the versatility of the
present approach.
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Define an inner product over the domain in space–time under consideration such
that

〈q′, q∗〉 =

∫ T

0

∫
Ω

q′ · q∗ dx dt,

and consider the identity

〈N′(q)q′, q∗〉 = 〈q′,N′(q)∗q∗〉+ b. (6.5)

Integration by parts may be used to move all differential operations from q′ on the
left-hand side of (6.5) to q∗ on the right-hand side, resulting in the definition of the
adjoint operator

N′(q)∗q∗ =


−∂u

∗
j

∂xj

−∂u
∗
i

∂t
− uj

(
∂u∗i
∂xj

+
∂u∗j
∂xi

)
− ν ∂

2u∗i
∂x2

j

− ∂p∗

∂xi

 , (6.6)

where, again, the operation N′(q)∗ q∗ is a linear operation on the adjoint field q∗,
and the operator N′(q)∗ is itself a function of the solution q of the Navier–Stokes
problem. From the integrations by parts, we also get several boundary terms:

b =

∫
Ω

(u∗j u
′
j)|t=Tt=0 dx

+

∫ T

0

∫
Γ±2
nj

[
p∗ u′j + u∗i (uj u

′
i + u′j ui)− ν

(
u∗i
∂u′i
∂xj
− u′i ∂u

∗
i

∂xj

)
+ u∗j p

′
]

dx dt,

where n denotes a unit outward normal to the surface. The quantity b is closely
related to the bilinear concomitant discussed by Morse & Feshbach (1953), and the
outline of the present derivation is related to the approach taken therein.

The identity (6.5) is the key to expressing J′ in the desired form. An adjoint field
q∗ is first defined using the operator N′(q)∗ together with appropriate forcing in an
interior equation with appropriate boundary conditions and initial conditions. There
is here some flexibility which we exploit to obtain a simple expression for J′. Indeed,
combining this definition of q∗ with the definitions of q in (3.1) and q′ in (6.3), the
identity (6.5) reveals the desired expression, as will now be shown for the cases of
interest in this paper.

6.2.3. Definition of adjoint field and identification of gradient

Case (a): minimization of drag
Consider an adjoint state defined (as yet, arbitrarily) by

N′(q)∗q∗ = 0 in Ω, (6.7a)

u∗ = −d1r on Γ±2 , (6.7b)

u∗ = 0 at t = T , (6.7c)

where the adjoint operation N′(q)∗q∗ is given in (6.6) and r is a unit vector in the
x1-direction. Note that the adjoint problem (6.7), though linear, has complexity similar
to that of the Navier–Stokes problem (3.1), and may be solved with similar numerical
methods. Note also that the ‘initial’ conditions in (6.7) are defined at t = T , and are
thus best referred to as ‘terminal’ conditions. With this definition, the adjoint field
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must be marched backward in time over the optimization horizon – due to the sign
of the time derivative and viscous terms in the adjoint operator N′(q)∗ in (6.6), this
is the natural direction for this time march. However, as the operator N′(q)∗ is a
function of q, computation of the adjoint field q∗ requires storage of the flow field q
on t ∈ [0, T ], which itself must be computed with a forward march. This storage issue
presents one of the numerical complications which preclude solution of the present
optimization problem for large optimization intervals T . However, the problem is not
insurmountable for intermediate values of T+ . O(100).

The identity (6.5) is now simplified using the equations defining the state field (3.1),
the perturbation field (6.3), and the adjoint field (6.7). Due to the judicious choice of
the right-hand-side forcing to the adjoint problem in (6.7b), the identity (6.5) reduces
(after some manipulation) to

−d1

∫ T

0

∫
Γ±2
ν
∂u′1
∂n

dx dt =

∫ T

0

∫
Γ±2
p∗ φ′ dx dt.

Using this equation, the cost functional perturbation J′DRAG may be rewritten as

J′DRAG(φ;φ′) =

∫ T

0

∫
Γ±2

DJDRAG(φ)

Dφ φ′ dx dt =

∫ T

0

∫
Γ±2

(p∗ + `2φ)φ′ dx dt.

As φ′ is arbitrary, this implies that

gDRAG ,
DJDRAG(φ)

Dφ = p∗ + `2φ.

The desired gradient DJDRAG(φ)/Dφ is thus found to be a simple function of the
solution of the adjoint problem proposed in (6.7).

Case (b): regulation of turbulent kinetic energy
Consider an adjoint state defined by

N′(q)∗q∗ = d4

(
0
u

)
in Ω, (6.8a)

u∗ = 0 on Γ±2 , (6.8b)

u∗ = 0 at t = T . (6.8c)

The identity (6.5) is now simplified using the equations defining the state field (3.1),
the perturbation field (6.3), and the adjoint field (6.8). Due to the judicious choice of
the right-hand-side forcing to the adjoint problem in (6.8a), the identity (6.5) reduces
to

d4

∫ T

0

∫
Ω

u · u′ dx dt =

∫ T

0

∫
Γ±2
p∗ φ′ dx dt.

Using this equation, the cost functional perturbation J′TKE(reg) may be rewritten in
the desired form, as in case (a), and thus, as φ′ is arbitrary, we find that

gTKE(reg) ,
DJTKE(reg)

Dφ = p∗ + `2 φ.

The desired gradient DJTKE(reg)(φ)/Dφ is thus found to be a simple function of the
solution of the adjoint problem proposed in (6.8).
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Case (c): regulation of enstrophy

Consider an adjoint state defined by

N′(q)∗q∗ = d3

(
0
−∆u

)
in Ω, (6.9a)

u∗ = 0 on Γ±2 , (6.9b)

u∗ = 0 at t = T . (6.9c)

The identity (6.5) is now simplified using the equations defining the state field (3.1),
the perturbation field (6.3), and the adjoint field (6.9). Due to the judicious choice of
the right-hand-side forcing to the adjoint problem in (6.9a), the identity (6.5) reduces
to

−d3

∫ T

0

∫
Ω

∆u · u′ dx dt =

∫ T

0

∫
Γ±2
p∗ φ′ dx dt.

Using this equation, the cost functional perturbation J′ENS(reg) may be rewritten in
the desired form, as in case (a), and thus, as φ′ is arbitrary, we find that

gENS(reg) ,
DJENS(reg)

Dφ = p∗ + `2 φ.

The desired gradient DJENS(reg)(φ)/Dφ is thus found to be a simple function of the
solution of the adjoint problem proposed in (6.9).

Case (d): regulation of large-scale and intermediate-scale structures

Consider an adjoint state defined by

N′(q)∗q∗ = d4

(
0

−∆−1u

)
in Ω, (6.10a)

u∗ = 0 on Γ±2 , (6.10b)

u∗ = 0 at t = T . (6.10c)

The identity (6.5) is now simplified using the equations defining the state field (3.1),
the perturbation field (6.3), and the adjoint field (6.10). Due to the judicious choice of
the right-hand-side forcing to the adjoint problem in (6.10a), the identity (6.5) reduces
to

−d4

∫ T

0

∫
Ω

∆−1u · u′ dx dt =

∫ T

0

∫
Γ±2
p∗φ′ dx dt.

Using this equation, the cost functional perturbation J′LARGE(reg) may be rewritten in
the desired form, as in case (a), and thus, as φ′ is arbitrary, we find that

gLARGE(reg) ,
DJLARGE(reg)

Dφ = p∗ − `2 ∆φ.

The desired gradient DJLARGE(reg)(φ)/Dφ is thus found to be a simple function of
the solution of the adjoint problem proposed in (6.10).

The formulation following from JINT(reg) is identical to that for JLARGE(reg) with ∆
replaced by ∆B .
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Case (e): terminal control of turbulent kinetic energy
Consider an adjoint state defined by

N′(q)∗q∗ = 0 in Ω, (6.11a)

u∗ = 0 on Γ±2 , (6.11b)

u∗ = d6u(T ) at t = T . (6.11c)

The identity (6.5) is now simplified using the equations defining the state field (3.1), the
perturbation field (6.3), and the adjoint field (6.11). Due to the judicious choice of the
right-hand-side forcing to the adjoint problem in (6.11), the identity (6.5) reduces to

d6

∫
Ω

u(T ) · u′(T )dx =

∫ T

0

∫
Γ±2
p∗φ′dxdt.

Using this equation, the cost functional perturbation J′TKE(ter) may be rewritten in
the desired form, as in case (a), and thus, as φ′ is arbitrary, we find that

gTKE(ter) ,
DJTKE(ter)

Dφ = p∗ + `2φ.

The desired gradient DJTKE(ter)(φ)/Dφ is thus found to be a simple function of the
solution of the adjoint problem proposed in (6.11).

6.2.4. The general framework

In the cases studied in the previous subsection, three possible locations of forcing
for the adjoint problem were encountered: the interior equation, as in (6.8a), (6.9a) and
(6.10a), the boundary conditions, as in (6.7b), and the terminal conditions, as in (6.11c).
The domain of forcing appropriate for the adjoint problem is strictly a function of
the domain in which cost functional to be minimized weights the flow quantities.

In this paper, we only consider control of the flow by modification of the boundary
conditions (blowing/suction). In addition, however, the flow problem may be forced
by interior forcing (such as the Lorentz force exerted by electromagnetic fields on a
conducting fluid) or optimized with respect to its initial conditions (a situation that
arises in forecasting problems). Thus, there is a duality between the three possible
sources of forcing in the flow problem and the three possible sources of forcing in the
adjoint problem. This general mathematical framework is laid out in detail in Bewley
et al. (2000).

6.3. Gradient update to the control

6.3.1. Simple gradient

With the gradient information determined in the previous subsection, a strategy
for optimization of the controls using a simple gradient algorithm may be proposed
such that

φk+1 = φk − αkgk
over the entire optimization horizon t ∈ (0, T ), where k indicates the iteration number
and αk is a parameter of descent which governs how large an update is made. At each
iteration, αk is computed to be that value which locally minimizes the cost functional
J(φ) under consideration when the control φk is updated in the direction −gk of local
maximum decrease of the cost functional J(φk). This minimization is conducted with
a numerically stable line search algorithm. The iteration is initialized with φ1 = 0.
As k →∞, such an algorithm will usually converge to some local minimum of J(φ).
Note that, due to the nonlinearity of the system, convergence to the global minimum
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Figure 9. Possible shortcoming of gradient-based approaches: convergence to local minima.

will not in general be attained by such a scheme and that, as time proceeds, J will
not necessarily decrease.

To visualize the minimization problem in a low-dimensional setting, figure 9 illus-
trates the possible shape of a cost function J1(φ1, φ2) in the space spanned by the
setting of two control variables φ1 and φ2 in a discrete low-dimensional optimization
problem. As shown in the figure, there will be some minimum point away from which
the value of the cost function will be higher, and thus the shape of the cost function
in this space might look something like a deformed bowl. Starting from point A in
figure 9, computation of the appropriately defined adjoint field provides information
about the local shape of the bowl, as indicated by the shaded region: specifically, it
identifies the direction of maximum decrease of the cost function, indicated by the
arrow. By continually moving in the direction of steepest descent, the simple gradi-
ent algorithm eventually proceeds towards a minimum of the cost function. Note,
however, that depending on where point A is relative to the minima, this algorithm
may converge to the global minimum B or to some other local minimum such as C;
this is a drawback of searching with a gradient routine. To alleviate this difficulty,
the gradient search routine may be initialized from several different starting points
φ1,j (chosen at random or from a regular array selected a priori), the optimization
conducted from each starting point, and the performance of the different sets of
optimized controls compared. Alternatively, a random disturbance can be added to
the control update near the beginning of the optimization process (cooling this dis-
turbance off near the end of the optimization) to ‘push’ the algorithm out of shallow
local minima. Both approaches effectively blend the ‘global’ minimization capability
of genetic algorithms with the fast convergence capability for very high-dimensional
optimization problems of gradient-based algorithms, but neither approach was found
to be necessary in the present work. Note that in pathological cases, such as the
function J2(φ1) illustrated in figure 9, gradient algorithms break down altogether,
and strategies based on function evaluations alone are preferred (see § 2.1).

6.3.2. Conjugate gradient

As shown in figure 10, the simple gradient approach described above is usually very
inefficient. Even in quadratic minimization problems, for cases in which the function
being minimized has a long, narrow ‘valley’, the simple gradient algorithm often gets
stuck ‘bouncing’ from one side of the valley to the other without turning to proceed
along the valley floor, as shown in figure 10(a)†. In such cases, the conjugate gradient

† Note that, in the present approach, a line minimization is performed at each iteration in the
descent direction. The ‘bouncing’ behaviour shown in figure 10(a) may be alleviated somewhat by
stopping short of a line minimization at each iteration, at the cost of slowing the convergence of
the gradient algorithm significantly.
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Figure 10. Convergence of the simple gradient algorithm (◦) and the Polak–Ribere variant of the
conjugate gradient algorithm (+), when applied to find minima of two test functions, (a) quadratic
J3(φ1, φ2) and (b) non-quadratic J4(φ1, φ2), of two scalar control variables φ1 and φ2 (horizontal
and vertical axes). Contours illustrate the level surfaces of the test functions; contours corresponding
to the smallest isovalues are solid, those corresponding to higher isovalues are dotted.

algorithm has proven to be much more efficient, at the very modest cost of a slight
increase in computational storage. This method proceeds in a direction which is a
linear combination of the direction of maximum decrease of the cost function and
the direction used in the previous descent step. Thus, like a skier negotiating a similar
type of terrain, this scheme retains a momentum term that helps turn the descent
path to proceed down narrow valleys. Further, the conjugate gradient approach may
be adapted to be quite effective even for non-quadratic minimization problems, as
demonstrated in figure 10(b).

The model problem considered in figure 10(a) is the minimization of a simple
functionJ3(φ1, φ2) which is quadratic in the control variables; this problem illustrates
an extremely low-order model of the cost function for the present flow problem if
the state equation is assumed to be linear (e.g. for small perturbations of φ from
the minimum point of J(φ)). The model problem considered in figure 10(b) is a
stiff chemical equilibrium problem to determine the equilibrium concentrations of
the proton and carbonate species in a sodium bicarbonate solution; in this case,
the function to be minimized, J4(φ1, φ2), is a sixth-order polynomial in the control
variables. In both cases, the conjugate gradient algorithm converges to within machine
zero of the absolute minimum of J . Convergence is attained in 2 iterations in the
quadratic case and 60 iterations in the non-quadratic case.

In contrast, the simple gradient algorithm does not converge effectively to the
minimum in either of these two simple test problems, even though 30 iterations
are used in the fairly well-conditioned quadratic problem of figure 10(a) and 1000
iterations are used in the poorly conditioned non-quadratic problem of figure 10(b). In
fact, in the non-quadratic case, the simple gradient algorithm makes no visible progress
towards the minimum after the first iteration for the particular initial conditions
shown, resulting in an error of over a factor of 3 in both of the concentrations. Based
on the results of these tests, the conjugate gradient algorithm was selected for all
control optimizations reported in the remainder of this work.

The particular variant of the conjugate gradient algorithm which appears to be
best suited for most non-quadratic optimization problems, including the difficult case
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shown in figure 10(b), is referred to as the Polak–Ribiere method (Polak 1971; Scales
1985; Press et al. 1986; Luenberger 1989). It is given by

φk+1 = φk + αkhk,

where the update direction hk is initialized such that h1 = −g1 and defined thereafter
by

hk = −gk + βkhk−1,

where the gradient gk is determined by an adjoint formulation for the cost functional
of interest J(φk), as discussed in § 6.2, and the coefficient βk in the momentum term
is given by

βk =
(gk − gk−1) · gk
gk−1 · gk−1

.

Again, αk is computed to be that value which minimizes the cost functional J(φ)
under consideration when the control φk is updated in the direction of descent hk .

Applying this algorithm to minimize a quadratic function J(φ), the sequence of
gradient vectors throughout the iteration are mutually orthogonal, so gk−1 · gk = 0.
Neglecting numerical error, exact convergence is achieved in N iterations, where N is
the dimension of the vector φ being optimized, as shown in figure 10(a) for N = 2.
For the minimization of non-quadratic functions, the term gk−1 · gk tends to reset the
conjugate gradient iteration towards a simple gradient behaviour in non-quadratic
regions, and thus, usually, speeds the convergence. However, such resetting behaviour
is not fully reliable, and thus it is generally useful to ‘bleed off’ the excess momentum
occasionally, taking βk = 0 every 10 or 20 iterations and thereby resetting to a simple
gradient step before continuing.

The dimension of the control in the present problem is quite large (O(107) control
variables per optimization horizon at Reτ = 180 and T+ = 40), which precludes
the use of second-order techniques which are based on the computation or approx-
imation of the full Hessian matrix ∂2J/∂φi∂φj or its inverse during the control
optimization. The number of elements in such a matrix scales with the square of
the number of control variables, and is unmanageable in the present case. However,
reduced-storage variants of variable metric methods (Vanderplaats 1984), such as the
Davidon–Fletcher–Powell (DFP) method, the Broydon–Fletcher–Goldfarb–Shanno
(BFGS) method, and the sequential quadratic programming (SQP) method, approx-
imate the inverse Hessian information by outer products of stored gradient vectors,
and thus achieve nearly second-order convergence without storage of the full Hessian
matrix. Such techniques should be explored further for very large-scale optimization
problems such as the present in future work.

6.4. Numerical method for control computation

The adjoint problem is discretized and coded with a numerical method almost identical
to that used to solve the flow problem on the same spatial grid (see § 4). The velocity
field is stored every 5 time steps on the forward sweep, with linear interpolation of
these stored fields used on the backward sweep to determine the operator N′(q)∗.
The Polak–Ribiere variant of the conjugate gradient algorithm is used for the control
update, with α computed at each iteration by Brent’s method, which is a stable and
numerically efficient line-minimization algorithm taken from Press et al. (1986) which
begins the optimization with a ‘safe’ golden section search and transfers to a ‘fast’
inverse parabolic interpolation when the solution is approached.
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Figure 11. Performance of optimized controls for formulations based on JTKE(ter) as a function
of the optimization horizon T+ as computed in direct numerical simulations at Reτ = 100: (a)
history of drag, (b) history of turbulent kinetic energy. For small optimization horizons (T+ = O(1)),
approximately 20% drag reduction is obtained, a result which can be obtained with a variety of
other approaches. For sufficiently large optimization horizons (T+ & 25), the flow is returned to
the region of stability of the laminar flow and the flow relaminarizes, resulting in a 57.2% drag
reduction with no further control effort required.

7. Performance of controlled systems
In order to validate the utility of the DNS-based predictive control approach, a

series of simulations was performed using the code outlined in § 4 and benchmarked in
§ 5. These simulations bring to light several of the control issues discussed previously.
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The horizon T over which the flow is optimized is a critical parameter which must
be chosen carefully. The larger the optimization horizon, the more the cost functional
represents the problem of interest, but the more the optimization problem increases
in difficulty. As mentioned previously, it appears as if optimization of the nonlinear
Navier–Stokes control problem over an infinite time horizon, which would require
the solution of a very difficult Hamilton–Jacobi–Bellman (HJB) problem in infinite
dimension, is computationally intractable. As shown in figure 11, it is worthwhile
to consider as long a T as computationally affordable in order to maximize long-
term performance. Returning to the chess analogy (see § 2.1), this makes perfect
sense: one can never win a game of chess by looking forward in time just a single
move. On the contrary, it is essential to estimate how the game will evolve. Note
that relaminarization occurs in the present simulations for the JTKE(ter) formulations
when T+ & 25. Note also that, for simplicity, we have taken Ta = T for all of the
simulations reported here; variations of the ratio Ta/T are explored in figure 15.

The lobed behaviour of figure 11 is expected, and is a consequence of the fact
that we are using here a formulation based on the terminal control of TKE in the
receding-horizon framework. As discussed at the end of § 2.1, such a strategy allows
excursions of the TKE over the short term to go unpenalized by the control algorithm
so long as they lead to long term advantage (specifically, a reduced value of the TKE
at the end of the optimization period). The idea is akin to allowing sacrifices during
a game of chess.

In addition to the selection of T , the choice of the cost functional to be minimized,
which mathematically defines the problem to be solved, is another critical decision
which must be made. A discussion of the pros and cons of a variety of different cost
functionals is presented in § 6.1. Figure 12 shows the performance of the optimized
controls for three of the most promising optimal control formulations for T+ = 100:
specifically, those based on the minimization of JDRAG, JTKE(reg), and JTKE(ter). Over
the long term, the JTKE(ter) formulation is clearly superior, and is the only one
of the three formulations which relaminarizes this particular flow in our present
simulations.

Scaling the DNS-based predictive control approach to higher Reynolds numbers is
extremely difficult due to its computational expense. In the present simulations for the
larger values of T , the computational cost is approximately 50 times that of a regular
DNS over the same time interval. This expense is due to iterative flow and adjoint
computations and the extra flow computations required to optimize the descent
parameter α at each iteration step (see figure 1 and §6.4 for further details). Many
techniques have been proposed to streamline the computational algorithm, such as
application of the reduced-storage BFGS approach (which would greatly reduce the
need for extra flow computations to determine α), the solution of several suboptimal
problems to precondition the optimal control problem over the full time interval
(Heinkenschloss 1999), and the utilization of (cheaper) large-eddy simulations (LES)
during the iterative flow prediction and adjoint computation stages of the procedure
(Chang & Collis 1999).

However, even with the above-mentioned computational expense of the present
approach, figure 13 reveals that the approach can at least be extended to flows at
Reτ = 180, leading (in the T+ = 40 case) to about a 50% drag reduction and a
factor of 3 in TKE reduction in 500 viscous time units. This is almost identical
to the performance seen in figure 11 for the T+ = 50 case at Reτ = 100 over the
same time period (500 viscous time units). Relaminarization of this flow should
also therefore be possible with the present approach given a sufficient amount of
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Figure 12. Performance of optimized controls for three different optimal control formulations
(JDRAG, JTKE(reg), and JTKE(ter) as labelled) as computed in direct numerical simulations at
Reτ = 100: (a) history of drag, (b) history of turbulent kinetic energy. The optimization hori-
zon was taken as T+ = 100 for all three optimal control formulations shown here. The best
opposition control strategy (from Hammond et al. 1998) is shown for comparison.

computer time. As the simulation yielding the lower curves of figures 13(a) and 13(b)
took approximately 1500 hours of single-processor Cray C90 time, extending these
drag and TKE histories will be deferred until the improved optimization approaches
discussed above have been developed. As both Reτ = 100 and Reτ = 180 should
probably be considered as ‘low Reynolds number’, the question of the ability to scale
the present approach to ‘high Reynolds number’ is left unanswered, though it is clear
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Figure 13. Performance of optimized controls for formulations based on JTKE(ter) as a function of
the optimization horizon T+ as computed in direct numerical simulations at Reτ = 180: (a) history
of drag, (b) history of turbulent kinetic energy. Again, longer optimization horizons are seen to
be superior. Unfortunately, due to the high number of iterations required, the present simulations
are approximately 50 times more expensive than regular direct numerical simulations, and thus
computations at this Reynolds number are prohibitively expensive with present resources.

that more efficient numerical techniques should be explored before significantly higher
Reynolds numbers are considered.

Note that constant-mass-flux channel flows at Reτ = 100 and Reτ = 180 are
both subcritical; once brought to a sufficiently small neighbourhood of the laminar
state, these flows will relaminarize with no further control feedback required. Note
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Figure 14. Response of system on [t, t + T ] in a controlled simulation (JTKE(ter) formulation,
T+ = 40, and Reτ = 180) with control turned off at t+ = 483: ———, drag (scale at left); −−−−,
TKE (scale at right). The faster rise of the TKE indicates that it is a more sensitive indicator of
turbulence regeneration in the flow.

also, however, that laminar channel flows at Rec > 5772 are readily made linearly
stable by linear feedback control strategies (see, for example, the recent work on the
development of linear feedback control strategies surveyed by Bewley 2001). Once such
linearly stabilizing linear feedback is applied to a higher-Reynolds-number turbulent
flow, the system becomes subcritical, just like uncontrolled systems studied in the
present manuscript. Further, as discussed in our exposition on possible cost functions
in § 6.1, and argued by Farrell & Ioannou (1996) and elsewhere, the extraction
of energy from the mean flow, and thus the sustenance of the energy feeding the
turbulence cascade, is described by mechanisms which might be characterized as
‘primarily linear’. Linear control feedback might thus someday get us much closer
to the stabilization of turbulence, if not all the way there. By applying adjoint-
based techniques on top of linear control strategies, which take care of the so-called
‘primarily linear’ mechanisms sustaining the turbulent cascade of energy, we might
well make the task of controlling turbulence substantially easier. Thus, it makes
sense to apply nonlinear adjoint-based control optimization as an add-on on top
of linear control feedback which linearly stabilizes the higher-Reynolds-number flow
in question. On the other hand, the sheer dynamic complexity of higher-Reynolds-
number flows might well prove to be a Gordian knot which is impossible to cut; this
exciting question remains, for the moment, unanswered.

To address the question of why the formulation based on minimization of JTKE(ter)

worked better than the formulation based on minimization of JDRAG, the control
was turned off at t+ = 483 in one of the controlled simulations. With control off,
the turbulence in the flow quickly regenerates and the flow eventually returns to the
fully turbulent state†. The regeneration of turbulence over the time interval [t, t+ T ]
is shown in figure 14. As can be seen, the TKE (a measure of the fluctuations in

† Note that this is a subcritical flow, but we are still well outside the domain of convergence of
the laminar state at this point in the simulation.
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Figure 15. Drag of optimized controls for formulations based on JTKE(ter) for T+ = 100 as T+
a is

reduced from T+ to T+/2. Also plotted (lower curve) is the relaxation of the mean turbulent flow
profile to the laminar state, with all modes other than kx = kz = 0 artificially set to zero at t = 0.
The proximity of the three curves implies that the drag reduction performance of the optimalized
unsteady controls in these cases appears to be nearly ideal.

the flow) responds much more quickly than does the drag (a measure of the mean
flow profile) when characterizing the regeneration of turbulence in the flow. This
provides numerical evidence for the statement made in § 2.1 that turbulence is the
‘cause’ and high drag is the ‘effect’, and it is most effective to target the ‘cause’ in the
cost functional.

Figure 15 illustrates that, for the JTKE(ter) case with T+ = 100, reducing T+
a from

T+ to T+/2 results in a negligible performance increase. In fact, the drag reduction
performance of the controlled system with T+ = 100 is quite close to what appears to
be the fundamental performance limitation set by the time scale of the relaminarizing
mean flow profile, shown as the lower curve in figure 15.

In the optimal calculations presented here, we chose ` = 10−2 (control effort is taken
to be ‘cheap’), and the cost functional is dominated in all cases by the contribution
of the term which is a function of u. Note that, for a linear system, small ` in the
control formulation can result in a very large control magnitude. For the present
nonlinear system, it was found that the small ` limit actually resulted in a finite
control magnitude, with an r.m.s. magnitude of the control approximately equal to
that used in the y+ = 15 opposition control cases discussed in § 1.2. Increased values
of ` resulted in decreased control magnitude and reduced values of drag and TKE
reduction.

The spatial correlations of the control distribution are commensurate with the
spatial correlations of the flow fluctuations near the wall in both the x- and z-
directions, exhibiting approximately the classic ‘streak spacing’ when the control is
turned on and correlations over longer distances as the flow nears relaminarization.
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This result is exactly as expected. In a discrete implementation, actuators some
fraction of the streak spacing in the uncontrolled turbulent flow would be necessary
to effectively control this system.

The power utilized by the control algorithm is given by the rate of addition
of kinetic energy to the flow plus the rate of work done against the (fluctuating)
hydrodynamic pressure of the fluid. The straightforward expression for the power
applied by the control algorithm on the horizon [0, T ] is

Pφ =
1

T

∫ T

0

∫
Γ±2
φ

(
φ2

2
+ p

)
dx dt,

whereas the power expense due to the drag of the flow (which is overcome by the
mean pressure gradient Px) may be calculated as

PDRAG =
Px

T

∫ T

0

∫
Ω

u1 dx dt.

However, the expression for Pφ accounts for both kinetic energy addition to the flow
by blowing and also kinetic energy removal from the flow by suction, and the pφ work
term is not necessarily positive. Note also that, due to the mass flux constraint on the
control, (3.2), the mean value of pressure on the wall p̄ does not affect Pφ. In most
physical implementations, however, it is unlikely that useful energy can be effectively
extracted from the system by the actuators. Our idealization of blowing/suction
applied as the actuation is too far removed from the actual application hardware
to get a reliable estimate of the power requirements using the above expression for
Pφ. Adding absolute value signs in a completely ad hoc manner and subtracting
out the effect of the mean pressure p̄, which is unspecified in the current system, a
conservative estimate of the power used by an actual control algorithm is

1

T

∫ T

0

∫
Γ±2

(
|φ|φ

2

2
+ |φ(p− p̄)|

)
dx dt.

Even with this conservative formula for estimating the power requirement of the
actuators, the power required by the actuators in the present simulations is less than
1% of the power saved due to the drag reduction of the relaminarized flow. Thus we
see that the the control authority here is large: it is not by brute force, but rather by
finesse, that relaminarization is attained.

8. Conclusions
The purpose of this paper is to present the fundamental issues central to the appli-

cation of optimal control theory in the predictive control framework to the problem
of turbulence, and to illustrate the effectiveness of this approach in well-resolved di-
rect numerical simulations of incompressible low-Reynolds-number turbulent channel
flows. Primary conclusions include:

1. There is sufficient control authority in small amounts of zero-net-mass-flux
blowing and suction distributed intelligently over the walls to completely relaminarize
a low-Reynolds-number turbulent channel flow.

2. The DNS-based receding-horizon predictive control framework, in which adjoint
fields are used as the central component of a gradient-based optimization strategy,
provides a numerically tractable algorithm for computing effective controls. The
adjoint field computation is about as expensive as a flow field computation over the
same time interval. The Polak–Ribiere variant of the conjugate gradient algorithm,
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with occasional resetting to a simple gradient step, is an effective minimization method
using this high-dimensional gradient information. The optimizations performed here
are, to the best of our knowledge, the highest-dimensional control optimizations ever
performed; on each optimization interval in the Reτ = 180, T+ = 40 case (for which
there were 280 time steps per optimization interval), there were 170×170×2×280 ≈
107 control variables and 170× 129× 170× 280 ≈ 109 state variables. The expense of
the algorithm must be drastically reduced in the future; the purpose of the present
simulations was to determine a best-case ‘benchmark’.

3. There is sufficient flexibility in the present method that, with minor modification,
it can be used to optimize controls for both regulation and terminal control problems
targeting a wide variety of flow quantities of interest, with concentration on large,
intermediate, or small length scales. An a priori understanding of flow physics may
therefore be blended with the mathematical optimization strategy by appropriate
selection of the cost functional.

4. Formulations which optimize the controls over longer time horizons T have a
significant advantage over formulations which optimize over shorter time horizons.

5. Formulations based on terminal control strategies, which allow excursions in the
short term if they lead to long term advantage, are more effective than formulations
based on regulation of the quantity of interest.

6. Formulations based on minimization of drag are less effective than formulations
based on the terminal control of turbulent kinetic energy. Drag seems to be a less
sensitive indicator of turbulence suppression or regeneration over the time interval
than is the terminal value of turbulent kinetic energy.

Though not immediately implementable in hardware, the present work represents a
significant step towards the determination of optimally effective yet implementable
control strategies for the mitigation or enhancement of the consequential effects of
turbulence in flows of real engineering interest. The simulation database resulting in
the drag and TKE histories shown in § 7 produced hundreds of gigabytes of data
which will be combed in future work in an attempt to extract useful correlations which
may be exploited by practical control algorithms. Further, based on the groundwork
laid in the present paper, the seeds are now sown for the development of practical
turbulence control algorithms via adjoint-based optimization of open-loop control
parameters and/or the coefficients in implementable feedback control rules.
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Appendix A. Review: derivation of a simple linear adjoint operator
Consider two scalars q(t) and q∗(t) on t ∈ [0, T ]. Define an inner product such that

〈q, q∗〉 =

∫ T

0

q · q∗dt. (A 1)
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Let N = ∂/∂t. The adjoint of N is found with

〈N q, q∗〉 = 〈q,N∗q∗〉+ b. (A 2)

Using integration by parts,∫ T

0

(
∂q

∂t

)
q∗ dt =

∫ T

0

q

(
−∂q

∗

∂t

)
dt+ q q∗ |t=T − q q∗|t=0 . (A 3)

Thus, N∗ = −∂/∂t and b = q q∗|t=T − q q∗|t=0.

Appendix B. Derivation of the adjoint compressible Euler equation
A convenient form of the compressible Euler equation for a perfect gas coupled

with a passive scalar equation is

∂ρ

∂t
+ ∇ ·m

∂m

∂t
+ ∇ · m⊗m

ρ
+ ∇p

∂p

∂t
+ ∇ · pm

ρ
+ (γ − 1) p

(
∇ · m

ρ

)
∂ζ

∂t
+ ∇ · ζm

ρ


= 0. (B 1)

where ρ is the density, m = ρu is the momentum vector, p is the pressure, ζ = ρξ is
the density-weighted passive scalar concentration, γ is a constant, the dot (·) denotes
the scalar product, and ⊗ denotes the tensor product. The quantities ρ, p, and ζ are
scalar fields in the domain Ω and the quantity m is a vector field in the domain Ω. In
a more compact notation, we will refer to this nonlinear equation simply as

N(q) = 0 where q =

 p
m
ρ
ζ

 .

Taking the Fréchet derivative of (B 1), it is seen that

∂ρ′

∂t
+ ∇ ·m′

∂m′

∂t
+ ∇ ·

(
m′ ⊗m
ρ

+
m⊗m′
ρ

− ρ′m⊗m
ρ2

)
+ ∇p′

∂p′

∂t
+ ∇ ·

(
p′m
ρ

+
pm′

ρ
− ρ′ pm

ρ2

)
+ (γ − 1)

(
p′ ∇ · m

ρ
+ p∇ · m

′

ρ
− p∇ · ρ

′m
ρ2

)
∂ζ ′

∂t
+ ∇ ·

(
ζ ′m
ρ

+
ζm′

ρ
− ρ′ ζm

ρ2

)



= 0.
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Note that this equation is linear in the primed variables, and thus we may write it as

N′(q)q′ = 0 where q′ =

 p′
m′
ρ′
ζ ′

 .

This notation indicates that the equation is linear in q′, though the differential operator
N′(q), which is found by Fréchet differentiation of the nonlinear operator N(q), is
itself a (nonlinear) function of q. In tensor form (where the adjoint calculus to be
performed is easiest), the differential operation N′(q)q′ is written

N′(q)q =



∂ρ′

∂t
+
∂m′j
∂xj

∂m′i
∂t

+
∂

∂xj

(
m′j mi
ρ

+
mj m

′
i

ρ
− ρ′mj mi

ρ2

)
+
∂p′

∂xi

∂p′

∂t
+

∂

∂xj

(
p′mj
ρ

+
pm′j
ρ
− ρ′ pmj

ρ2

)
+ (γ − 1)

(
p′

∂

∂xj

mj

ρ
+ p

∂

∂xj

m′j
ρ
− p ∂

∂xj

ρ′mj
ρ2

)
∂ζ ′

∂t
+

∂

∂xj

(
ζ ′mj
ρ

+
ζ m′j
ρ
− ρ′ ζ mj

ρ2

)



.

We now determine an adjoint operatorN′(q)∗, which acts on an adjoint state q∗, via
the identity

〈N′(q) q′, q∗〉 = 〈q′,N′(q)∗q∗〉+ b, where q∗ =

 p∗
m∗
ρ∗
ζ∗

 , (B 2)

and where the inner product is defined such that

〈q′, q∗〉 =

∫ T

0

∫
Ω

q′ · q∗ dx dt.

Multiplying out N′(q) q′ · q∗, rearranging, substituting in to the left-hand side of
(B 2), and doing the appropriate integrations by parts to move all of the differential
operations off of q′ and onto q∗, it is found that

q′ ·N ′(q)∗q∗= p′
(
−∂ρ

∗

∂t
− mj

ρ

∂ρ∗

∂xj
+ (γ − 1)ρ∗

∂

∂xj

mj

ρ
− ∂m∗j
∂xj

)
+m′i

(
−∂m

∗
i

∂t
− p

ρ

∂ρ∗

∂xi
− γ−1

ρ

∂

∂xi
ρ∗p− mj

ρ

∂m∗i
∂xj
− mj

ρ

∂m∗j
∂xi
− ∂p∗

∂xi
− ζ

ρ

∂ζ∗

∂xi

)
+ρ′

(
−∂p

∗

∂t
+
pmj

ρ2

∂ρ∗

∂xj
+

(γ − 1)mj
ρ2

∂

∂xj
ρ∗p+

mj mk

ρ2

∂m∗k
∂xj

+
ζ mj

ρ2

∂ζ∗

∂xj

)
+ζ ′
(
−∂ζ

∗

∂t
− mj

ρ

∂ζ∗

∂xj

)
,
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which leads to the following expression for the adjoint operation:

N′(q)∗ q∗=



−∂ρ
∗

∂t
− mj

ρ

∂ρ∗

∂xj
+ (γ − 1) ρ∗

∂

∂xj

mj

ρ
− ∂m∗j
∂xj

−∂m
∗
i

∂t
− p

ρ

∂ρ∗

∂xi
− γ − 1

ρ

∂

∂xi
ρ∗ p− mj

ρ

(
∂m∗i
∂xj

+
∂m∗j
∂xi

)
− ∂p∗

∂xi
− ζ

ρ

∂ζ∗

∂xi

−∂p
∗

∂t
+
pmj

ρ2

∂ρ∗

∂xj
+

(γ − 1)mj
ρ2

∂

∂xj
ρ∗ p+

mj mk

ρ2

∂m∗k
∂xj

+
ζ mj

ρ2

∂ζ∗

∂xj

−∂ζ
∗

∂t
− mj

ρ

∂ζ∗

∂xj


.

Returning to the operator form, the adjoint operation N′(q)∗q∗ is written

N′(q)∗q∗ =



−∂ρ
∗

∂t
− m

ρ
· ∇ρ∗ + (γ − 1) ρ∗∇ · m

ρ
− ∇ ·m∗

−∂m
∗

∂t
− p

ρ
∇ρ∗ − γ − 1

ρ
∇ρ∗ p− m

ρ
(∇⊗m∗ + (∇⊗m∗)T )

−∇p∗ − ζ

ρ
∇ζ∗

−∂p
∗

∂t
+
pm

ρ2
· ∇ρ∗ +

(γ − 1)m

ρ2
· ∇ρ∗ p+

m

ρ
·
(
m

ρ
· ∇
)
m∗

+
ζm

ρ2
· ∇ζ∗

−∂ζ
∗

∂t
− m

ρ
· ∇ζ∗



.

The boundary terms which result from the integrations by parts are

b =

∫
Ω

(p∗ρ′ + m∗jm
′
j + ρ∗p′ + ζ∗ζ ′)|T0 dx

+

∫ T

0

∫
∂Ω

nj

[
p∗m′j + m∗i

(
m′jmi
ρ

+
mjm

′
i

ρ
− ρ′mjmi

ρ2

)
+ m∗j p

′

+ρ∗
(
p′mj
ρ

+
pm′j
ρ
− ρ′pmj

ρ2
+
γ − 1

ρ2
(ρpm′j − ρ′pmj)

)
+ζ∗

(
ζ ′mj
ρ

+
ζ m′j
ρ
− ρ′ ζ mj

ρ2

)]
dx dt,

where n denotes a unit outward normal to the surface ∂Ω of the domain Ω.
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